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1 Introduction 

Acquiring accurate site-specific soil and rock information is a crucial and essential step for planning and 

design of any geotechnical construction project. However, subsurface soil/rock layers are natural forming 

materials associated with inherent heterogeneity and randomness. Therefore, the design and 

construction of a geotechnical system that is either embedded in or founded on the subsurface soils need 

to take into account these spatial variations of soil/rock layering and the engineering properties of each 

identified layer. Due to the nonspecific knowledge of the soil forming histories and/or other prior 

geological and human activities, the subsurface information at a project site can be difficult to ascertain. 

Drilling and sampling to obtain borehole logs, together with various in-situ testing, are usually performed 

by the transportation agencies and/or geotechnical consultants for determining subsurface soil and rock 

profiles and their associated engineering properties. However, in practice only a limited number of 

borehole logs and in-situ soundings are conducted for a given project, partially due to the limited budget 

and the tight project schedule. As a result, the geological and geotechnical information only can be 

probed at sparsely geographically distributed locations; whereas, subsurface information at other 

locations may have to be inferred based on available information either from archived data or planned site 

investigation data. The nonspecific knowledge of the formation process of the geological bodies, together 

with the insufficient number of borehole logs and in-situ test results, leads to significant uncertainty in the 

inferred subsurface model. It is fair to say that the issues resulted from the subsurface uncertainty and the 

influence of such uncertainty on the geotechnical design have long been a challenge facing practitioners. 

To be more specific, these challenges can be summarized below. 

• Available site investigation data is from multiple sources with a variety of degree of accuracy, 

credibility, and resolution (e.g., borehole drilling and soil sampling vs. in-situ tests vs. geophysical 

measurement, or historical archived vs. current investigation), hence there is a challenge for performing 

consistent and rationale data fusion; 

• Available subsurface information is geographically distributed and generally sparse, thus 

requiring rationale interpretation methods; 

• There is no methodology to allow for engineers to assess the level of confidence once he or she 

has developed the interpreted soil/rock layering information and the associated soil/rock properties for 

subsequent design and construction purpose; 

• Engineers spend enormous amount of time to complete interpretation and presentation of the 

subsurface models, while interpretation often relies on subjective engineering judgement and engineers’ 

preference for simplification; 

• Current interpretation methods at best yield a deterministic model where quantitative assessment 

of uncertainties (or confidence level) of such model is lacking and the effects of such uncertainties on the 

subsequent engineering analysis/design of geotechnical systems cannot be considered at this stage.  
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The research team at the University of Dayton has dedicated significant amount of efforts in developing 

transformational methodologies to overcome these aforementioned challenges, while recognizing early 

on that digital data of geotechnical investigation information will become more widely available. This 

transformation into digital data era has been propelled by adoption of a good practice of geotechnical 

data management (GDM), as it has been ongoing at ODOT, and the emergence of common agreed data 

formats for geotechnical data. For standardized geotechnical data format, the UK and various parts of the 

world have reached agreed upon standards, AGS (Association of Geotechnical and Geo-environmental 

Specialists) (Walthall and Palmer 2006). In the United States, the DIGGS (Data Interchange for 

Geotechnical and Geoenvironmental Specialists) (Weaver et al. 2008) format is starting to emerge as the 

preferred format. Both formats enable the transfer of geotechnical and geo-environmental data within and 

between organizations. When utilizing data interchange standards, compiling geotechnical data requires 

importing the data from the data interchange file into the chosen geotechnical data management system. 

The Office of Geotechnical Engineering at ODOT (OGE) is taking a national leading role in supporting the 

development efforts of DIGGS. The value of adopting such practice in the industry could be further 

enhanced, if a practical and user-friendly computational tool can be afforded to the geotechnical 

practicing industry for addressing the above-mentioned challenges associated with current geotechnical 

site investigation practices. As geotechnical site investigation data in ODOT will be DIGGS compliant, it is 

now an opportune moment to develop an integrated computational subsurface interpretation and 

modeling tool to truly transform geotechnical site investigation and interpretation into a digital world. 

Figure 1 depicts the overall framework of the AI based methodology developed by the research team. In 

brief, it can be separated into four different modules (Module 1-4 in Fig. 1). The mathematical foundation 

of the developed methodologies is based on the following knowledge base and principles: 

• Geo-statistics and Markov random field theory; 

• Unsupervised machine learning (Gaussian mixture model); 

• Bayesian inferential framework; 

• Stochastic simulation techniques; 

• Information theory. 
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Figure 1. The overall framework of the developed computational modeling/simulation techniques for 

geotechnical site characterization 

The mathematical foundation, theories, and examples of applications have been published in peer-

reviewed high impact journals. A list of publication related to the developed computational algorithms is 

provided in the references. The developed method is still evolving and functions and performance are 

continuously improved. Therefore, this project is considered as an initial effort for establishing a robust 

and practical workflow for AI based subsurface modeling and uncertainty quantification. Ultimately, the 

developed methodologies can achieve the following two major functions in the future: 

• Fuse multiple datasets from different site investigation methods (borehole drilling and sampling, 

in-situ test and geophysical measurements) and provide synthesized interpretation of the soil/rock profiles 

with the statistical interpretation of soil/rock properties of each layer based on stochastic simulation, AI, 

and ML techniques; 

• Enhance the visualization of the interpreted subsurface models with added information, such as a 

measure of confidence level and identification of locations where additional borehole logs and/or CPT 

sounding could be performed to improve the confidence level of the interpreted subsurface geotechnical 

models.  

1.1 Objectives of this Study 

The objectives of the current research can be summarized as follows: 

• Study the DIGGS XML based borehole log reporting format and modify the current computer 

program to read this data as input; 
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• Work with OGE to perform multiple case studies using ODOT project site investigation data to 

gain in depth understanding of potential areas for further improvement of the computational algorithms 

• Provide a white paper regarding the feasible road map to make the developed program a  

verified, stand-alone, user friendly, and implementable web-based computational tool that meet ODOT’s 

requirements and application needs. 

1.2 Scope of Work 

The research work can be divided into three main groups: 

Task group 1: Modify the current program to be able to read DIGGS compliant XML-based schema 

Task group 2: Perform multiple case studies using benchmark datasets (geotechnical investigation data 

of several project sites) provided by ODOT. Illustrate and discuss the validity of the essential techniques 

in the computational program 

Task group 3: Conduct in-depth analysis and provide a road map for further work to make the current 

research grade computer program an implementation-ready, web-based computational software.
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2 Python Application Interface (py-API) for processing data with DIGGS schema 

2.1 General introduction of DIGGS 

DIGGS (Data Interchange for Geotechnical and Geoenvironmental Specialists) is a standard format for 

the electronic transfer of geotechnical and geoenvironmental data. DIGGS is software neutral and non-

commercial. DIGGS can be used for transfer of all geotechnical and geoenvironmental data throughout all 

project stages, thus offering enormous advantages in terms of workflow efficiency, data accuracy and 

validity, records retention and management, and consequently cost savings. These features provide an 

open platform for data documentation, exchange, and processing. 

2.1.1 DIGGSML Schema  

The DIGGS schemas are Open Geospatial Consortium (OGC) Geography Markup Language (GML) 

application schemas meaning that all schema constructs must derive from GML elements and types, and 

follow GML's Object/property model, which govern how schema elements and Extensible Markup 

Language (XML) instance documents are constructed. GML is an XML application that provides a 

grammar and base vocabulary for describing geo-referenced geotechnical and geoenvironmental data. 

GML was developed in order to provide a standard means of representing information about geospatial 

features-their properties, interrelationships, and so on. 

Features describe real world entities and are the fundamental objects in GML. Features can be concrete 

and tangible, such as boreholes and trench walls, or abstract and conceptual, such as projects and 

jurisdictional boundaries. GML features are described in terms of their properties, which can represent 

spatial and temporal characteristics or associations with other features. For instance, GML can describe 

the location, shape, and extent of geographic objects as well as properties such as color, speed, and 

density, some of which may depend on time. As it is impossible to describe all features for all application 

domains and predict their usage a priori, the GML core schemas do not fix definitions of specific 

implementation of feature types such as a trial pits or layer systems. Rather, specific features and 

properties are defined in GML Application Schemas, which are created by user communities such as 

DIGGS. So, DIGGS defines the appropriate GML elements and applications used in the delivered 

schema as applied to Geotechnical and Geoenvironmental engineering. 

GML provides a base of common geographic and geometric constructs (e.g. the Abstract Feature model, 

Points, Line Strings, and Polygons) that can be shared and reused by GML Application Schemas. In turn, 

the GML constructs are built upon XML constructs such as elements, attributes, types, data types (e.g. 

integers, strings, dates), international language support, etc. By building on successful existing web 

technologies, the DIGGS GML Application Schemas can leverage a whole world of GML and XML Tools. 
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2.1.2 DIGGS Objects 

The DIGGS schema contains elements in the form of Objects and Properties. An Object represents a 

feature (e.g. Borehole, sample, etc.) and then properties about that object (e.g. diameter, height, density, 

etc.) 

Features are the primary objects in DIGGS. They are named entities comprised of descriptive properties. 

Non-feature objects also exist and are structurally the same as features; but, typically are not shared out 

of context with the features they are associated with. In DIGGS, objects appear as nested complex 

property values of features (a complex property element is one that contains child elements), e.g. a 

polygon representation of a trench wall’s surface extent. A layer system defining soil descriptions is an 

example of a DIGGS feature, whereas the individual layers contained within a layer system are just 

objects that wouldn’t be shared outside of the context of the layer system. Metadata objects are used to 

describe contextual information about features or other objects. 

2.1.3 DIGGS Properties 

Properties are simply child elements of a feature or object. For example, a numeric result of a test is a 

property of the test feature. Figure 1 illustrates properties as direct children of a Borehole feature. 

 
Figure 2. A DIGGS Feature or Object is described by its property children 

 
Figure 2 reveals a GML syntactic convention used to distinguish between Objects and properties; 

element and type names representing Objects are written in UpperCamelCase and the property names 

are written in lowerCamelCase. 

2.2 Data structure of DIGGS complete .xml file 

2.2.1 DIGGS Data storage 

Instances of the schema that contain actual data can be created and stored anywhere, online or offline, 

but were designed for sharing over the web. Data repositories are maintained by DIGGS users and can 
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be read by applications on mobile devices, desktop workstations, or computer servers from various data 

stores: 

File directories – accessible online as public or private web pages or offline in local file directories (e.g. for 

field work without internet access). 

Spatial Databases – accessible online through public or secure web interfaces or offline using a 

standalone client interface 

Data instances can be validated against the official DIGGS schemas online or can be validated by a 

locally saved/cached copy of the DIGGS schemas. 

2.2.2 DIGGS 2.0.a Feature Model 

DIGGS 2.0.a defines eight (8) base classes of features (as shown in Figure 3 below) that can be 

contained as a child under the root DIGGS element. This classification is formalized so that all existing 

features in DIGGS are categorized by derivation from these base classes. The existing features in DIGGS 

2.0.a are the commonly used and requested features by the DIGGS community. 

 

Figure 3. Base Feature Classes in DIGGS 2.0.a 

The eight (8) base feature classes are classified by Processes, Entities, and Groups as follows: 

• InvestigationTarget –target features of interest being sampled/measured [Entity] 

DiggsType 

Investigation Targets 

Projects 

Sampling Features 

Measurements 

Sampling Activities 

Samples 

Layer Systems 

Groups 

Root Element 

Child Element 

Child Element 

Child Element 

Child Element 

Child Element 

Child Element 

Child Element 

Child Element 
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• Project - business activities that collect, compile, and process information from locations [Process] 

• SamplingFeature - real world places and constructions (e.g. Boreholes) from which observations are 

made, samples are collected, or tests are run. [Entity] 

• Measurement – test readings (in-situ or not) taken from samples collected from sampling features, or 

created via a sampling activity [Process] 

• SamplingActivity - the process of sample creation or collection [Process] 

• Sample - earth material, fluids, or gases collected or created for observation and testing [Entity] 

• LayerSystem - ordered interval observations or interpretations of earth materials, properties or 

features at a location [Entity] 

• Group - collections of projects, locations, samples or groups of these, for the purpose of providing 

meaningful context to observations and measurements. 

2.2.3 DIGGS Feature Properties and Attributes 

DIGGS objects have a number of properties including mandatory and optional. Optional properties of all 

objects include status, description, and remarks metadata; and all features include additional optional 

properties including associated file and role metadata objects. Projects, Sampling Features, Samples, 

Layer Systems, Sensors, and Groups are "named" features. In addition to the identifiers and other 

properties, they also carry a mandatory name property. Some DIGGS objects are named (i.e. carry a 

mandatory name property) including some of the layers and all of the Metadata objects. 

Objects that need to be referenced within the schema need to have a name. For example, a borehole 

must have a name, so it can be referred in the schema as to where a sample came from. A sample must 

have a name so a test can be assigned to the sample. Properties that stay within the hierarchy of the 

object and need no external reference do not have a mandatory name. 

2.3 DIGGS – Python application interface 

A python application interface (py-API) has been developed to read and parse the DIGGS .XML files and 

to construct a customized data structure for the software modules as shown in Figure 1. The developed 

python interface is based on existing open source python standard library “structured markup processing 

tools”. The elements (i.e., all the features and their properties) defined in the .xml files are extracted and 

the corresponding tree structure is converted into native python data structures as shown in Figure 4.
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Figure 4. The developed python interface (The .xml files are parsed and converted into customized python native data structures, which can be 

easily processed by other modules)
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3. Case study and validation 

3.1 Project CUY-480 – soil profile modeling and uncertainty quantification 

3.1.1 Project CUY-480 introduction 

The project is a deck replacement on the twin structures carrying IR 480 over the Cuyahoga River Valley. 

The bridge spans the CSX Railroad, the Cuyahoga River, Cleveland Metroparks Ohio and Erie Canal 

Reservation and Towpath Trail, West Canal Road, the Ohio Canal, and Canal Road. The location of the 

crossovers on the west end of the project is between the IR 480 Bridge over the IR 77 ramps and the SR 

21 Bridge over IR 480. The location of the crossovers on the east end of the project is to the east of the 

Transportation Boulevard interchange. The plan view of the project CUY-480 is shown in Figure 5. 

 
Figure 5. The plan view of the project CUY-480 

 
Within the Bridge Limits region, DIGGS data schema was adopted to digitally record and store the 

geotechnical site investigation data. CUY-480 DIGGS data includes borehole data collected in 2013 and 

2016, with 10 boreholes in 2013 and 15 in 2016. 

3.1.2 Data conversion 

The original DIGGS compliant .xml files are parsed and converted into python data structures with the 

developed DIGGS--python interface. In the base feature classes of DIGGS schema, Sampling Feature, 

Measurement and Observation include all required geotechnical information of boreholes. All the features 

are written in GML in the raw .xml file (text file). 

In the base feature class Sampling Feature, there are some subclasses: Total-Measured Depth, 

Reference Point, Sampling Feature Property, and Borehole Construction Method. From these 

subclasses, the borehole ID, borehole information of depth, latitude and longitude coordinators, and 

sampling method can be extracted. The subclass Borehole Construction Method contain two subclasses 
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Construction Method and construction Equipment. From the subclasses Construction Method and 

Construction Equipment, drilling method and drilling rig type can be identified respectively. 

From the base feature class Observation, the layer thickness of each soil strata and the visual description 

of each soil layer can be extracted. 

In the base feature class Measurement, there are three subclasses Total Penetration, Blow Count and 

Position List. For example, from the subclass Total Penetration and Blow Count, the soil penetration test 

blow count of each layer at each borehole can be extracted. Some physical properties also can be 

extracted from the subclasses Particle Size and Sieve Number. 

By passing the raw .xml files into the interface, a list of borehole objects in native python dictionary data 

structure can be constructed as shown in Figure 6. The detailed information of each borehole is shown in 

Figure 7. Each item (defined by the “key”) in the dictionary is saved using a specific data type that will be 

further utilized in the modules of the developed software. 

 

Figure 6. Converted borehole objects in native python data structure 
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Figure 7. Detailed extracted borehole information  

Within the bridge limits as shown in Figure 5, 25 boreholes were logged, within which 8 (a-f, V-1 and V-2 

in Figure. 8) were drilled and recorded using DIGGS data schema in 2013 and 2016, the rest 17 are 

archived borehole logs. The horizontal plan of all boreholes are shown in Figure 8. All borehole locations 

are projected onto the straight line connecting Borehole 1 and 17 and this straight line indicates the 

location of the targeted soil profile. Six DIGGS logs a-f and 17 archived logs are used for soil profile 

simulation, parameter estimation and uncertainty quantification while the remaining two boreholes (V-1,2) 

are used for validation. The latitude and longitude coordinates of each borehole location are converted 

into Universal Transverse Mercator (UTM) coordinates. In Figure 8, the blue open circles indicate the 

actual location of the boreholes logged in DIGGS format, the green open circles indicate the archived 

borehole locations, and the black solid circles are the projection of these boreholes on the reference line. 

Profile along the line in Figure 8 and the soil stratification of each borehole is shown in Figure 9. 



13 

 

 
Figure 8. Plan view of all boreholes (x- y- coordinates are in Universal Transverse Mercator (UTM) 

coordinate system). 

According to ODOT classification for geotechnical logging of soil and rock stratum, soil samples can be 

classified into and recorded as one of the following types: A-1-a, A-1-b, A-3, A-3a, A-2-4, A-2-5, A-2-6, A-

2-7, A-4a, A-4b, A-5, A-6a, A-6b, A-7-5, A-7-6, A-8a, A-8b. For practical reasons and based on current 

ODOT practice, a more simplified classification of soil types is adopted in this report:  

• A-1-a, A-1-b, A-3, A-3a, A-2-4, A-2-5, A-2-6, A-2-7 are classified as Non-Cohesive soil (NCO);  

• A-6a, A-6b, A-7-5, A-7-6 are classified as Cohesive soil (COH);  

• A-4a, A-4b are classified as Intermediate soil that between cohesive and non-cohesive soil (INT); 

• A-8a, A-8b are classified as organic soil (ORG). 

The vertical observed stratification at individual borehole location is shown in Figure. 9. It needs to be 

mentioned that the maximum elevation difference is 387 feet (118 meters) and the distance from borehole 

No.1 to No.17 is 4616 feet (1407 meters). The vertical profile is discretized into 100 (rows) by 201 

(columns) pixels and thus each pixel indicates a 23 x 4 feet (7 x 1.18 meter) rectangular area in the 

vertical section. 

 
Figure 9. The observed vertical stratifications at all borehole locations. 
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3.1.3 Stochastic simulation 

The known pixels that represent available borehole information (i.e., 1-17 and a-f) in Figure 9 are then 

transferred into the Module 3 of the developed software. 5000 stochastic simulations are performed to 

have robust estimates of the model parameters and converged soil profile realizations. Since the soil 

labels (i.e., the soil types) at unknown pixels are all inferred from the known pixels (i.e., the available 

boreholes) and prior information about the spatial anisotropy of the subsurface configuration, they are 

uncertain and have different preference of soil labels at different pixels. The uncertainty level of a specific 

pixel can be measured and reflected by the information entropy. A higher information entropy value 

signals larger uncertainty in the stratum assignment (i.e., the assigned soil/rock label) in the element. For 

example, the element that has the equal possibilities of being assigned with different strata could yield the 

highest information entropy value, which is the most uncertain scenario. It can be seen from Figure 10 

that the stratigraphic uncertainty in the element close to the boreholes is relatively small and negligible; 

whereas, that in the element far away from the boreholes is large (i.e., the boundaries between adjacent 

strata become more uncertain). Thus, the borehole data exert a strong constraint on the stratum 

assignment in the nearby elements, this constraint, however, decreases with the distance measured from 

the nearest boreholes. The information entropy in Figure 10 might also imply that with the increase in the 

density of boreholes, the stratigraphic configuration at the site of concern could be more accurately 

characterized. It can be noticed that the information entropy map is heterogeneous and most of the pixels 

have entropy value greater than 0.5, which means the uncertainty level of the inferred pixels is high. This 

is due to the fact that only 23 sparse boreholes are known spanning across more than 1400 meters (only 

8.4% pixels of the unmasked area in Figure 10 are known). More detailed discussion in this regard is 

provided below. 

By analyzing and visualizing the spatial distribution of derived information entropy, we can quantitatively 

assess the difficulty of this soil profile delineating problem together with an estimation of the soil profile. In 

this investigation, two estimated soil profiles are reported; namely, maximum a posteriori (MAP) 

estimation, and the maximum log(target) realization. The former one shows the soil profile taking the 

uncertainty of fitted model parameters into consideration and the latter one is a specific realization using 

the sampled model parameter with the highest posterior probability density. The difference between the 

two soil profile estimations is two-fold: 1) the MAP estimation is a statistic of the entire random field while 

the maximum log(target) estimation is just a single realization; 2) the MAP estimation is derived from the 

marginal distribution of the soil label probability at each pixel while the log(target) estimation is only 

conditional on a specific parameter set.  

The MAP estimation provides a map of the most probable soil type at a per-pixel basis. This map is a 

“smoothed” estimation of the entire random field by eliminating detailed local anisotropy effect introduced 

during the stochastic simulation process. On the other hand, the maximum log(target) estimation is a 
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single realization using the most probable model parameters; hence, it can well preserve the local 

anisotropy yet lack consideration regarding the uncertainty of model parameters. 

Actually, without uncertainty quantification, neither of them can represent the truth properly. The reason 

can be expressed from two different perspectives. First, given the information only at a limited number of 

borehole locations, the Markov random field parameters need to be inferred based on these known 

boreholes and some prior knowledge if available. The uncertainty introduced by the unknown parameters 

can strongly affect the stochastic simulation process as highly uncertain model parameters will prevent 

the simulation from converging (i.e., solving an ill-posed problem). In other words, there should exist a 

critical number of boreholes (corresponding to a given resolution of the discretized subsurface, and 

inferential algorithm) at a given site. No method can achieve a reasonable inference of the soil profile if 

the known borehole information is insufficient. Even the stochastic simulation can converge with very 

limited borehole information, a high overall information entropy level is expected, as frequently changing 

model parameters due to insufficient information during the simulation process can result in highly 

uncertain random field realizations. Under this condition, neither MAP or maximum log(target) estimation 

can represent the entire field. Second, because the distance between neighboring boreholes varies at a 

given site (e.g., the borehole spatial distribution in Figure 9) and the local complexity of the soil layer 

configuration may be changing across the entire site, the spatial distribution of information entropy is 

heterogeneous. The soil labels of pixels with low information entropy are more certain than those with 

high information entropy, and hence only a portion of the pixels in the MAP or maximum log(target) 

estimation having a low level of uncertainty can be considered as representative soil labels whereas other 

pixels are highly uncertain and, without additional boreholes, it is not meaningful to infer the true labels of 

these pixels in a statistical sense. This is why uncertainty quantification is of paramount importance in 

assessing the accuracy of a subsurface model. 
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Figure 10.  Simulation results: soil profile estimation and the associated uncertainty quantification using 

information entropy. 

3.1.4 Validation 

For a detailed validation, the MAP estimation at the pixels of the validation boreholes is extracted and 

compared with the actual observations logged in the DIGGS file, the comparison results are shown in 

Figure 11. V-2 prediction has a higher overall uncertainty level than that of V-1 and hence the prediction 

at V-1 has higher accuracy. The predictions are generally smooth and cannot detect detailed thin layers, 

however, the information entropy may provide some indication of the local complexity. By comparing the 

MAP estimation with the truth, 72.7% of V-1 is correctly inferred, and 53.7% of V-2 is correctly inferred. 

The much lower inferential accuracy at V-2 can be expected as can be noticed from the ground truth and 

the overall inferred profile from Figure 10, the dominant soil type at V-2 is “INT”. This type of soil is in the 

“fuzzy zone” between the “NCO” and “COH”, besides, the “hard” classification of soil samples at borehole 
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locations during the labeling process did not provide enough information regarding the uncertainty of 

possible soil types. This issue is even more pronounced when it comes to differentiating the “COH” from 

“INT” based on laboratory testing results (e.g., the subtle difference between a Plasticity Index of 10 vs. 

11 would result in a “INT” soil vs. a “COH” soil). The other reason could be the local complexity. Suppose 

V-2 is not known in advance, the neighboring Boreholes 11 and 12 have frequent changes of soil types 

along depth and can result in high information entropy in the region between them (Figure 10). In this 

regard, the inferred MAP estimate is not reliable anymore as no dominant soil type can be determined 

and multiple soil types may have comparable likelihood. This point also can be reflected by the noticeable 

differences between the MAP estimate and the maximum log(target) realization in this region. 

 
  (a)            (b) 
Figure 11. Validation results using two validation boreholes: (a) V-1; (b) V-2. 

For the sake of acquiring more objective validation results, leaving-one-out cross validation is adopted 

here. To be specific, each and every borehole is considered as the validation borehole in turn and the rest 

ones are used for simulation. Then the simulated soil stratification at the borehole location is compared 

with the true stratification at the validation borehole. The validation result is shown in Table 1. 

As shown in Table 1, the accuracy rate of boreholes 15, 16, 17 and b are 100%, the accuracy rate of 

borehole 2 is 0%. However, it needs to be noticed that these boreholes are very short and hence less 

representative. When checking other boreholes, the accuracy rate of boreholes 4, 5, 6, 7, V-1 and e are 

over 60%, the accuracy rate of boreholes 11, V-2, 13, 14, 15 and c are poor and less than 40%. The 

reason for the good inferencing results is that the validation borehole is close to the adjacent boreholes, 

while the validation boreholes in the latter are relatively far from the known borehole information and 

hence subject to softer spatial constraints. The accuracy rate of boreholes d and f are low, though the 

adjacent boreholes on both sides of d or f are close. The local complexity is higher at these locations, and 

hence without additional exploration, it is difficult to have accurate inference. 
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Table 1. Validation result of each borehole 

Validation 
Borehole ID 

Minimum 
Entropy 

Maximum 
Entropy 

Mean 
Entropy 

Borehole 
Length(m) 

Accuracy 
Rate 

1 1.07 1.1 1.08 17.29 0.37 
2 0.76 0.92 0.85 6.37 0.0 
3 1.01 1.09 1.05 11.83 0.31 
4 1.02 1.1 1.06 21.84 0.75 
5 0.7 0.97 0.81 21.84 0.83 
6 1.0 1.06 1.03 18.2 0.9 
7 1.03 1.1 1.08 30.94 0.76 
V-1 0.58 1.01 0.85 30.94 0.68 
8 1.01 1.1 1.06 59.15 0.46 
9 1.04 1.1 1.08 60.97 0.4 
10 0.74 1.09 0.95 38.22 0.36 
11 1.07 1.1 1.09 38.22 0.31 
V-2 1.07 1.1 1.09 38.22 0.43 
12 0.87 1.06 1.01 47.32 0.4 
13 1.06 1.1 1.08 22.75 0.36 
14 0.91 1.09 1.04 17.29 0.32 
15 1.03 1.05 1.04 2.73 1.0 
16 0.73 0.76 0.74 2.73 1.0 
17 0.56 0.9 0.73 5.46 1.0 
a 0.54 0.98 0.69 2.73 0.33 
b 1.09 1.1 1.09 2.73 1.0 
c 1.04 1.1 1.08 29.12 0.25 
d 1.02 1.1 1.06 17.29 0.26 
e 1.05 1.09 1.07 28.21 0.81 
f 0.93 1.08 1.02 10.01 0.27 

 

The accuracy also be partially reflected by the information entropy. The minimum information entropy of 

boreholes 2, 5, V-1, 10, 16, 17 and a are less than 0.8, and the mean information entropy of boreholes 

16, 17 and a are also less than 0.8. It indicates that the uncertainty of their simulation results is relatively 

low although they are very short and less representative. 

3.2 Project CUY-IR-490/SR10-02.09/19.28 – soil profile modeling and uncertainty quantification 

3.2.1 Project introduction 

The second case study is also a site exploration project for roadway bridge structure foundation design. 

Only limited information is available for this case study including boring locations, boring logs, and lab 

data of soil samples. For the subsurface modeling and uncertainty quantification, only boring plan, boring 

logs are used in this demonstration. The site exploration project was conducted in 2014 and 16 borehole 

logs were recorded, within which 14 boreholes are close to the roadway alignment and selected for 

further soil profile delineation and validation. The plan view with UTM coordinates is shown in Figure 12. 

All borehole locations are project onto the red line indicating the roadway alignment. The observed soil 

types at borehole locations are simplified into four categories (i.e., NCO, COH, INT, ORG) as defined in 

the previous example. The vertical observed stratification at individual borehole location is shown in 

Figure 13.  
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The maximum elevation difference is 177 feet (54 meters) and the distance from borehole No.2 to No.12 

is 617 feet (188 meters). The vertical profile is discretized into 54 (rows) by 101 (columns) pixels and thus 

each pixel indicates a 6 x 3.3 feet (1.86 x 1 meter) rectangular area in the vertical section. 

 
Figure 12. Plan view of all boreholes (x- y- coordinates are in Universal Transverse Mercator (UTM) 

coordinate system). 

 
Figure 13. The observed vertical stratifications at all borehole locations. 

3.2.2 Stochastic simulation 

In this example, the horizontal spatial range of the simulated soil profile is much smaller than the previous 

example (617 feet (188 meters) in this example versus 4616 feet (1407 meters) in the previous example). 

In order to have a higher spatial resolution, as mentioned above, the actual width of each pixel is 6 feet 

(1.86 meter) versus 23 feet (7 meters) in the previous example. 

Two boreholes (No. 5 and No. 11) are used for validation and the rest for stochastic simulation of the soil 

profile. The same experimental procedure of the previous example was performed. The uncertainty 
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quantification and simulation results are shown in Figure 14. As can be noticed, the overall uncertainty 

level is lower than previous example and most pixels have the entropy level lower than 0.8. Some 

artifacts (sharp and straight horizontal or vertical boundaries between different soil types) can be noticed 

in both MAP estimation of maximum log(target) realization. There are two possible reasons: 1) the 

stationary assumption may not be fully satisfied as real world soil spatial distribution should be non-

stationary and heterogeneous; 2) subject to the number of sparse known boreholes, it is difficult to 

increase the resolution yet still have a well converged soil profile image (the low resolution can pronounce 

the effect resulted from the stationary assumption) Generally speaking, both of the two estimations are 

reasonable. 

 
Figure 14. Simulation results: soil profile estimation and the associated uncertainty quantification using 

information entropy. 
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3.2.3 Validation 

The two validation boreholes are then investigated by comparing the MAP estimation with observed 

borehole log data. The comparison results are shown in Figure 15. The overall accuracy of borehole No. 

5 is 94.1% whereas the accuracy of borehole No. 11 is 78.8%. Similar as previous example, the general 

soil stratification can be inferred yet some details are missing since the local complexity cannot be well 

inferred only based on nearby boreholes. 

 
  (a)    (b) 
Figure 15. Validation results using two validation boreholes: (a) N0. 5; (b) No. 11. 

A leave-one-out cross validation has been conducted for this project as well and the result is shown in 

Table 2. 

Table 2. Validation results for each borehole of CUY-IR-490/SR10-02.09/19.28 

Validation 
Borehole ID 

Minimum 
Entropy 

Maximum 
Entropy 

Mean 
Entropy 

Borehole 
Length(m) 

Accuracy 
Rate 

1 0.55 1.01 0.81 30.94 0.65 
2 0.81 1.04 0.93 30.94 0.74 
3 0.47 0.76 0.61 25.48 0.82 
4 0.27 0.54 0.39 8.19 0.78 
5 0.34 1.01 0.54 30.94 0.59 
6 0.31 0.95 0.66 30.94 0.76 
7 0.37 0.92 0.63 31.85 0.8 
8 0.17 0.96 0.5 31.85 0.71 
9 0.68 1.08 0.87 31.85 0.94 
10 0.44 1.05 0.8 30.94 0.53 
11 0.72 1.01 0.85 30.94 0.82 
12 0.28 1.1 0.61 30.94 0.53 
13 0.45 0.92 0.59 26.39 0.41 
14 0.85 1.06 1.01 31.85 0.23 
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As shown in Table 2, the accuracy rate is generally high (9 out of 14 are higher than 0.6). Only boreholes 

13 and 14 have relatively lower accuracy rate which are less than 0.5. Except borehole No.4, all other 

boreholes have a depth more than 82 feet (25 meters) and hence the accuracy rate is representative. 

It can be noticed that the distance between neighboring boreholes has a great influence on the accuracy 

rate of inferred soil profile, which strongly agrees with our intuition. In addition, the resolution of the 

discretized subsurface section also matters, it needs to be compatible with the number of available 

boreholes so that certain amount of pixels have pre-assigned soil labels. This point is extremely important 

as mentioned above, only a sufficient number of known pixels can result in a converged simulation result. 

If this requirement cannot be satisfied, additional site investigation is required in order to have a 

reasonable soil profile inferencing result. In the current project, there are 100 × 54 pixels across the 

physical domain with 14 known boreholes. Yet there are much more pixels (200 × 100 pixels) in the 

previous case with 25 known boreholes. Both of them can result in converged results, however, the 

density of known information for project CUY-480 is much lower than that of current project. Thus, the 

overall level of information entropy of the current project is lower than that of project CUY-480. 

3.3 Project CUY-480 - CPT joint interpretation 

3.3.1 CPT dataset introduction 

The CPT dataset of interest in this study consists of nine CPT sounding records that were collected in the 

years of 2015 and 2016 for roadway bridge structure foundation design in Project CUY-480. As shown in 

Figure 16, the available CPTs can be divided into two groups based on their locations. The first group 

consists of four CPTs drilled closely on the west embankment of the Cuyahoga River, with horizontal 

clearances vary from 0.59 m to 3.89 m; the second group consists of five CPTs drilled on the north 

embankment of the Erie Canal, with horizontal clearances vary from 1.08 m to 3.09 m. The drilling depths 

of these CPTs vary from 10.5 m to 39.6 m. All soundings were completed within either pre-cored holes or 

started with the use of a dummy cone to make a pilot hole due to the presence of urban fill material within 

the near-surface; the pre-drilling depths vary from 1.8 m to 3.0 m. An identical vertical sounding interval of 

0.02 m applies for all the CPTs, which determines the size of the discretization lattice along the vertical 

direction in the proposed CPT joint interpretation approach.  
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Figure 16. The plan view of the CPT locations in project CUY-480 

3.3.2 Joint interpretation 

As the horizontal spacing between these two CPT groups is more than 656 feet (200 meters), the 

horizontal correlations of the CPT soundings from the two groups can be neglected. Thus, two joint 

interpretation cases are performed for the two CPT groups. The ground level at the multiple CPT 

locations in each group is the same; therefore no further adjustment is applied for the depths of the CPT 

sounding records. The sounding points collected from the top ten-foot (three-meter) soil segments in the 

CPT records are discarded to address the various pre-drilling depths of the different CPT locations and to 

eliminate the potential impact of the pavement or backfilled materials. The pairwise sounding points, i.e., 

log10Fr and log10Qtn, are computed using the remaining raw CPT soundings. The computed sounding 

points from CPT Group #1 and Group #2 are combined and plotted as scatter diagrams in the 

conventional Robertson SBTn chart, which is also referred to as the feature space in the developed 

approach, as shown in Figure 17(a) and (b), respectively. Cluster analyses can then be performed for 

each interpretation case using the developed joint interpretation algorithm, which considers not only the 

statistical patterns of the sound points in the feature space (e.g., the Robertson SBTn chart), but also the 

spatial correlations among the sounding points in the 3-D physical subsurface space. As shown in Figure 

17, the pairwise CPT sounding points in each interpretation case are categorized into seven and eight 

clusters for CPT Group #1 and Group #2, respectively. The estimated model parameters and the soil 

classes of each cluster are listed in Table 2. It is worth to mention that the total number of clusters is 

automatically estimated using the interpretation algorithm, instead of pre-defined, for each interpretation 

case. Based on the clustering result, the soil type of each CPT sounding point can be easily determined 

according to its associated cluster. Thus, the estimated stratification results for all the CPT soundings can 

be readily extracted simultaneously. 
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Figure 17. Clustering results for Project CUY-480 CPT dataset: (a) CPT Group #1; (a) CPT Group #2. 

Table 2(a). Estimated model parameters for CPT 
Group #1 in Project CUY-480 

 Table 2(b). Estimated model parameters for CPT 
Group #2 in Project CUY-480 

Cluster # SBTn # Parameter log10Fr log10Qtn  Cluster # SBTn # Parameter log10Fr log10Qtn 

1 4 
Mean 0.3036 1.2525  

1 4 
Mean 0.3599 1.2767 

Std 0.0039  0.0042   Std 0.0018 0.0024 

2 5 
Mean 0.2758 1.6962  

2 5 
Mean -0.0085 1.7721 

Std 0.0036 0.0044   Std 0.0072 0.0061 

3 5 
Mean -0.3960 1.3292  

3 4 
Mean 0.3131 1.0480 

Std 0.0280  0.0132   Std 0.0007 0.0020 

4 4 
Mean 0.1234 1.1391  

4 5 
Mean -0.3252 1.4226 

Std 0.0061 0.0035  Std 0.0166 0.0082 

5 1 
Mean -0.4829 0.8248  

5 6 
Mean -0.5271 2.0207 

Std 0.0409 0.0069  Std 0.0236 0.0126 

6 3 
Mean 0.4148 0.9702  

6 5 
Mean 0.2478 1.6346 

Std 0.0057 0.0145  Std 0.0076 0.0037 

7 3 
Mean 0.5632 1.2556  

7 3 
Mean 0.7266 1.0959 

Std 0.0041 0.0082  Std 0.0174 0.0427 

      
8 4 

Mean 0.5905 1.4048 

      Std 0.0030 0.0053 

 

3.3.3 Validation and discussion 

The stratification interpretation results obtained using the developed joint interpretation algorithm for CPT 

Group #1 and Group #2 are presented in Figure 18 and Figure 19, respectively. For each of the CPT 

soundings, the corresponding interpretation results obtained using the conventional SBTn chart is also 

provided for comparison purpose. It can be noted from Figure 18 and 19 that the interpretation results 
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obtained using the developed algorithm in general agree with the ones obtained using the conventional 

SBTn chart, as the major soil layers identified using both methods locate in similar depths. However, a 

major difference is that the results obtained using the SBTn chart exhibit excessively frequent changes of 

soil types along the CPT penetration paths, while the soil layers identified by the developed algorithm are 

much more continuous. In engineering practice, the extreme thin soil layers identified using the SBTn 

chart are generally unrealistic, and thereby requires further manual inspection and simplification. 

However, interpretation of a site-scale CPT dataset consisting of numerous CPT records can be a 

cumbersome and time-consuming task for practicing engineers; and still, the revision process is 

subjective as it relies highly on the individual experiences and so-called engineering judgement. In 

contrast, the developed joint CPT interpretation algorithm can exploit the hidden spatial correlation among 

CPT sounding points and provide more accurate and reasonable interpretation results by automatically 

eliminating the unrealistic thin soil layers. More importantly, based on a horizontal comparison of the 

obtained stratification results of the CPT soundings in each group, it can be found that the results 

obtained using the developed joint interpretation algorithm is much more consistent along the horizontal 

direction. To be specific, it can be noted that the detected soil layer boundaries at different CPT spots 

locate at almost the same depths. Such strong consistency is a solid demonstration of the accuracy of the 

developed interpretation algorithm, since the CPTs in each group are drilled closely to each other, and a 

strong horizontal correlation of the soil stratification can be expected.
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Figure 18. Stratification interpretation results for CPT Group #1 in the Project CUY-480. 
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Figure 19. Stratification interpretation results for CPT Group #2 in the Project CUY-480. 
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3.4 Christchurch CBD Area - CPT joint interpretation 

3.4.1 CPT dataset introduction 

In this case study, a CPT dataset collected at a project site in Christchurch, New Zealand, is studied. The 

analyzed site is located within the central business district of the city of Christchurch, which is largely built 

upon a Late Quaternary substrate of gravel, sand, silt, and swamp deposits. The plan view of this project 

is shown in Figure 20. The studied dataset consists of 44 CPT soundings and three borehole logs that are 

collected from a 240 m × 240 m square region. The detailed CPT and borehole data are available through 

the Canterbury Geotechnical Database. The drilling depth of these CPTs vary from 15.13 m to 22.72 m; 

pre-drilling depths of 0.8 m to 1.5 m are conducted for specific CPT locations. An identical vertical 

sounding interval of 0.01 m applies for all the CPTs, which determines the size of the discretization lattice 

along the vertical direction in the proposed CPT joint interpretation approach. Three available boreholes 

(see Borehole #1- #3 in Figure 20) are located adjacent to CPT #6, #7, and #12, with horizontal distances 

of 2.6 m, 4.5 m, and 3.2 m, respectively. Thus, in this study, the drilling logs from these three boreholes 

are considered as the real stratification configuration at the corresponding CPT locations. Note that the 

available borehole information is not used as input for the CPT interpretation algorithms, but only serves 

as a validation set to evaluate the accuracy of the CPT interpretation results. 

 
Figure 20. The plan view of the studied CBD Area in Christchurch, New Zealand 

3.4.2 Joint interpretation 

As the changes of the ground level at the CPT and borehole location are not significant (vary from 4.2 m 

to 4.6 m), it is assumed that the ground level at the multiple CPT location is the same, thereby no further 

adjustment is applied for the drilling depths of the CPT records and borehole logs. The sounding points 
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collected from the top 1.5 m soil segments in the CPT records are discarded to address the various pre-

drilling depths of the different CPT locations and to eliminate the potential impact of the pavement or 

backfilled materials. The pairwise sounding points, i.e., log10Fr and log10Qtn, are computed using the 

remaining raw CPT soundings. The computed sounding points from all the 44 CPT sounding records are 

plotted as a scatter diagram (see Figure 21) in the conventional Robertson SBTn chart. A cluster analysis 

can then be performed using the developed joint interpretation algorithm. As shown in Figure 21, a total 

number of seven clusters are identified in the scatter diagram of the pairwise sounding points; the 

detailed estimated model parameters and soil classes of each cluster are listed in Table 3. Based on the 

clustering result, the soil type of each CPT sounding point can be easily determined according to its 

associated cluster. Therefore, the estimated stratification results for all the CPT soundings can be readily 

extracted simultaneously. In this study, we focus on two interpretation cases. In case #1, the accuracy of 

the two approaches for interpreting multiple CPT records will be evaluated by validating the respective 

stratification interpretation results at the locations of CPT #6, #7, and #12, using the corresponding 

borehole logs as the ground truths. In case #2, the interpretation consistency of the two approaches will 

be further inspected by comparing the respective stratification interpretation results at the locations of 

CPT #1 and CPT #24, which is the pair of CPTs with the shortest horizontal distance of 9.2 m at the 

studied site. 

 

Figure 21. Clustering results for Christchurch CBD area CPT dataset. 
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Table 3. Estimated Model parameters using the joint interpretation approach 

Cluster # SBTn # Parameter log10Fr log10Qtn 

1 6 
Mean -0.1822 2.1092 
Std 0.0892 0.0520 

2 6 
Mean -0.2140 1.9763 
Std 0.1104 0.0601 

3 6 
Mean -0.2187 1.8905 
Std 0.1635 0.1000 

4 5 
Mean 0.3717 1.6323 
Std 0.1858 0.2417 

5 5 
Mean 0.0469 1.3426 
Std 0.2072 0.1626 

6 3 
Mean 0.4977 0.9455 
Std 0.1357 0.1545 

7 3 
Mean 0.1992 0.4333 
Std 0.4417 0.4482 

 

3.4.3 Validation and discussion 

We first examine the stratification interpretation results at the locations of CPT #6, #7, and #12, using the 

available boring logs as references. The interpretation results and the corresponding borehole logs are 

presented in Figure 22-24 to enable a close comparison. In these figures, the processed pairwise CPT 

sounding points (i.e., log10Fr and log10Qtn) are plotted in the first column; the stratification interpretation 

results obtained using the conventional SBTn chart are shown in the second column for comparison 

purposes; the stratification interpretation results from the joint analysis approach are visualized in the third 

column; the stratification profile obtained from the available borehole logs are presented in the fourth 

column. It can be noted from Figure 22-24 that the developed joint interpretation algorithm can 

automatically eliminate the extraneous thin layers obtained using the conventional SBTn chart. 

Meanwhile, focusing on the local differences between the stratification inferences obtained using the two 

approaches, it can be found that stratification results obtained using the developed algorithm is more 

consistent with the boring logs; thus, the joint interpretation approach can be considered as more 

accurate. 

Then, we examine the stratification interpretation results at the locations of CPT #1 and CPT #24, which 

have the closest horizontal clearance among all the CPT pairs in the studied site. Figure 25 shows the 

interpretation results for CPT #1 and CPT #24, in which the processed pairwise sounding points of CPT 

#1and #24 are plotted in the first two columns. The stratification interpretation results obtained using the 

conventional SBTn chart are shown in the third and the fourth columns for comparison purposes.  The 

stratification interpretation results of these two CPTs obtained using the joint analysis approach are 

visualized in the last two columns. It can be noted from Figure 25 that the stratification results obtained 

using the joint interpretation approaches at these two CPT drilling locations are quite consistent with each 

other. The sounding points collected from two testing locations are labeled with the same set of soil 

classes, and the delineated boundaries between the soil layers are located at similar depths. Although 
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boring logs at these two CPT testing locations are unavailable, according to the geological setting of the 

studied site, it seems unlikely that the subsurface stratification configurations and the mechanical 

properties of subsoils could change significantly within a horizontal clearance smaller than 10 m. 

It can be concluded from the above discussion, by fusing multiple CPT records and considering their 

spatial correlations, the developed joint CPT interpretation algorithm can provide accurate and consistent 

stratification interpretation results that require barely any additional manual corrections. 

 

Figure 22. Stratification interpretation results for CPT #6 in the studied Christchurch CBD Area. 
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Figure 23. Stratification interpretation results for CPT #7 in the studied Christchurch CBD Area. 
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Figure 24. Stratification interpretation results for CPT #12 in the studied Christchurch CBD Area. 
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Figure 25. Stratification interpretation results for CPT #1 and # 24 in the studied Christchurch CBD Area. 
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4. Summary and recommendations 

4.1 Major output from this project 

This research project report presented a detailed investigation regarding the following three aspects: 1) 

modifying the developed subsurface modeling program to be able to read DIGGS compliant XML-based 

schema; 2) Perform multiple case studies using real-world datasets (geotechnical investigation data of 

several project sites); 3) provide a white paper indicating the potential pathways for making the software 

accessible for applications by ODOT. The major output from this research project is summarized below: 

The DIGGS data schema has been well studied and a python interface has been developed to read and 

parse the DIGGS .XML files and to construct a customized data structure for the software modules. At 

this stage, the py-API has been developed in the form of a python module integrated into the developed 

program package. The py-API can be directly called in a python script and run in a python 3.x console. 

Two (2) case studies for validating subsurface profile modeling have been performed. Both DIGGS 

compliant XML files and archived borehole logs are used for generating a high resolution subsurface 

profile with quantified uncertainty. The modeling results are discussed and compared with ground truth at 

selected validation borehole locations. For a more thorough assessment, leave-one-out cross validation 

also has been conducted. It has been shown that the local modeling accuracy is strongly subjected to the 

associated uncertainty level at a given pixel. It can be concluded that the uncertainty quantification is 

paramount in subsurface modeling workflow and the capability of quantifying such uncertainty adds great 

values to the geotechnical site characterization and downstream engineering practices. 

Two (2) case studies for CPT data joint interpretation have been conducted. CPT data from Ohio and 

New Zealand have been analyzed using the developed joint interpretation module. The stratification 

interpretation results obtained using the developed joint interpretation algorithm are compared with the 

corresponding interpretation results obtained using the conventional SBTn chart. It has been 

demonstrated that the results obtained using the developed joint interpretation algorithm is much more 

consistent along both horizontal and vertical directions. The developed joint CPT interpretation algorithm 

can provide accurate and consistent stratification interpretation results that require barely any additional 

manual corrections. 

4.2 Recommendations for future research 

Based on the successful development of the py-API in this project, which enables the data transferring 

using the geotechnical data format DIGGS between any geotechnical data management systems and the 

most recent developed AI subsurface modeling tools developed by the research team, now the data-

driven modeling paradigm with automatic data flow can be implemented at a research level. However, the 

high potential of the research outcome from this project in downstream geotechnical practices is far from 

fully exploited. The research team recommends exploring three possible follow-up research projects in 

connection with the current project. 
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(1) Explore the use of geophysical test results to expand current geological modeling capabilities. 

Regarding how to incorporate geophysical information into the current subsurface modeling framework, 

the research team has already explored possible technical route and published two articles (Wang et al. 

2019; Wang et al. 2016) in the field of remote sensing and geophysical measurements for characterizing 

subsurface soil heterogeneity. Further adapting the developed theory and methods to the ODOT needs 

and aligning it with the geotechnical design purposes can be a feasible path to enhance the current AI 

based subsurface modeling tool. 

(2) Integrate the geological modeling tool into the UASLOPE 3.0 for a total reliability based slope stability 

analysis and pile stabilization design 

For this research direction, the research team has already published several articles in recent years, e.g., 

Gong et al. (2019) and Wang et al. (2017). The core task for this research topic should be the 

implementation level rather than theory development level. However, the implementation work may need 

substantial amount of time and effort to review existing source code of the program (i.e., UASLOPE 3.0), 

link different computational packages, test additional developments, accommodate exceptions, and 

develop tutorial and examples. 

(3) Enhance the geological modeling tool to possess an ability for direct usage of CPT and/or SPT for 

estimating pile length. 

For this topic, based on the current capability of the joint interpretation using CPT and/or SPT data, 

embedding the current ODOT foundation design practice of using in-situ tests, such as CPT, SPT, or 

pressuremeter test results, in conjunction with soil boring logs if applicable, can be integrated into the 

geological modeling module to allow for greater values and benefits to ODOT engineers and consultants 

working for ODOT. . 
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Appendix A: A brief knowledge of the machine learning based subsurface interpretation 

and modeling framework 

A.1 Motivation 

A key component of many geological and/or geotechnical subsurface modeling workflows is the use of in-

situ testing or borehole log data by expert geologists or geotechnical engineers to build interpretations of 

the geology (i.e., soil or lithology profile) along cross sections. Since usually only sparse data (i.e., limited 

data) is available, these interpretations will always be uncertain to some degree. Having a good 

knowledge of possible variations of subsurface stratifications based on interpretations from incomplete 

information is important because it allows the end user of a geological model to assess a model’s 

uncertainties and associated confidence level (or accuracy level) as well as to determine how these 

uncertainties may impact decisions made using the model. 

Since geomaterials are natural, rather than manufactured, materials, the planning and design of a built 

system, a system that is either embedded in or founded on the geomaterials, can be greatly influenced by 

the site specific soil stratification and variability of soil properties. Therefore, the current practice of 

interpreting incomplete in-situ testing and/or borehole log data is deficient and inadequate from the 

viewpoint that individual geologist or engineer exerts his/her own experience and preference in 

interpretation and that the intrinsic uncertainties of such interpretation cannot be quantified. Due to the 

nonspecific knowledge of the deposition histories and past tectonic activities, the geological model, a 

model that characterizes the geological and geotechnical information, at a site may not be known prior to 

the site investigation. Comprehensive information with 100% coverage could only be achieved by 

excavating the ground completely, which is obviously not a feasible methodology. Alternatively, geological 

model is assumed based on limited geotechnical site exploration information and uncertainty of the 

assumed model is implicitly accepted. However, engineers need to make decision concerning acceptable 

uncertainty levels of geological models in various stages of planning, design, construction and 

maintenance of a civil engineering built structure. As a prerequisite for engineers to make a rational 

decision, there exists a need for developing a methodology to quantitatively assess uncertainties of the 

interpreted geological model. 

It is generally accepted, site investigation plays a vital role in geological and geotechnical practices. 

Among the various site investigation techniques, cone penetration test and borehole exploration are the 

most widely used approaches to obtain the subsurface soil information. However, in practice only a 

limited number of boreholes and/or CPT soundings can be afforded in a specified project, partially due to 

the limited budget for site investigation and the tight project schedule. As an outcome, the geological and 

geotechnical information can only be known at relatively sparse borehole and CPT sounding locations; 

whereas, at other locations these information is unknown and may have to be interpreted based on those 

from the observed borehole and sounding locations. Under some circumstance, we are even not sure if 

the number of site exploration locations is sufficient or not for a robust inference of the soil stratification 
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and properties. The incomplete knowledge of the formation process of the geological bodies, together 

with the possible insufficient number of boreholes, could lead to significant uncertainty in the interpreted 

geological model. Therefore, it is safe to say that the issues of the characterization of the uncertainty of 

the interpreted geological model and the influence of such uncertainty on the geotechnical design are 

long standing challenges to the geologists and engineers. 

A.2 Heterogeneity of soil types or geotechnical units 

The level of details in establishing spatial distribution of different soil types or geotechnical units depends 

on specific project needs. Generally, it will be based on a balance between improved details against 

higher costs. In this project, a simplified soil classification system used by ODOT was used to group all 

observed soil samples into four types. 

Ideally, a detailed and accurate geotechnical analysis relies on obtaining all properties of the soil and rock 

including all spatial variations of the properties. Obviously, this would be impossible and therefore, a 

standard procedure is to divide a soil/rock mass into regions of homogeneous geotechnical units. A 

geotechnical unit is, in theory, a part of the soil or rock mass in which the mechanical properties of the soil 

or intact rock material are approximately uniform and the mechanical properties of the discontinuities 

(including anisotropy and spatial correlation of properties) within each set of discontinuities are the same. 

The anisotropy of properties in a geotechnical unit should be also uniform. In reality, homogeneity is 

seldom found and material and discontinuity properties vary within a selected range of values within the 

unit. Therefore, it can be concluded that characterizing the heterogeneity of the geotechnical units is the 

basic and fundamental task in subsurface modeling. 

A.3 Digital subsurface and BIM in geotechnical engineering 

The use of Building Information Modeling (BIM) has grown in recent years in structural and infrastructure 

engineering. However, these BIM software typically ignore information of the geology and subsurface soil 

properties. This is a significant shortcoming as the whole premise of BIM is to reduce costs by reducing 

risk at the early design stage and throughout the lifetime of the project. Recently, BIM principles has been 

applied to geotechnical engineering to help reduce uncertainty and produce a better site investigation 

practice, which  ultimately will help to reduce risk and cost. In the core, BIM concept when extended to 

geotechnical engineering requires the development of new algorithms in subsurface modeling, 

transforming from traditional experience-driven paradigm to the more advanced data-driven paradigm, as 

illustrated in Figure A1. Moreover, instead of interpreting site investigation data in a deterministic manner 

directly based on engineers’ subjective  judgement, the raw data can be processed, analyzed and 

modeled using probabilistic models and Bayesian inferential framework, so that possible spatial patterns 

can be extracted automatically using AI techniques with the ability to quantify uncertainty. The data-driven 

paradigm is more objective and the confidence level of the inferred results can be computed using 

Bayesian machine learning principles. The capability of uncertainty quantification is the key feature that 

differs the BIM in geotechnical engineering from the counterpart for the above ground structures. In 
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addition, as more and more site investigation data are collected and stored in standardized formats, it is 

now possible to automatically sharing, transferring, importing, exporting, and processing geotechnical 

data through internet, which paves the way to developing web-based applications for scalable AI-based 

subsurface BIM platform. 

Digital data is the core and enabler that allows the benefits of BIM to be achieved. For BIM to succeed, 

common agreed formats for reporting data need to be used. For geotechnical data, the UK and various 

parts of the world have well established and generally agreed upon standards, as promulgated by AGS 

(Association of Geotechnical and Geo-environmental Specialists). In the United States, the DIGGS (Data 

Interchange for Geotechnical and Geoenvironmental Specialists) format, as advocated by ASCE and 

FHWA, is starting to emerge as the preferred format. Both formats enable the transfer of geotechnical 

and geo-environmental digital data within and between organizations. When utilizing data interchange 

standards, compiling geotechnical data requires importing the data from the data interchange file into the 

chosen geotechnical data management system as illustrated in Figure A2.  

 

Figure A1. Traditional experience-driven and recent data-driven paradigms of subsurface modeling 

techniques. 
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Figure A2. DIGGS schema is the central hub for data sharing and transferring. 

A.4 Where is the gap? 

1) High resolution (i.e., detailed) 3-D model does not mean uncertainty quantification. 

We may have a lot of existing information available for the site, from historic maps, archived plots, to 

more recent digital data from recent projects. Using all available information would be a sizeable aid in 

understanding the site geotechnical conditions. 

A customary practice could be a two-pronged approach: collating the existing geotechnical knowledge in 

a geotechnical data management system, and at the same time developing a 3D ground model of the site 

and ground conditions. The two were then integrated to generate a detailed 3D geotechnical model with 

the intention of constantly refining the geotechnical data and model throughout the whole process from 

preliminary investigation, full site investigation, design and onwards. Usually, this kind of 3-D models are 

considered as the digital twin of the reality, however, with different levels of uncertainties at different 

locations within the subsurface and at different stages of the project. Even these models are apparently 

complete and with a lot of details, the portion at unobserved locations is generally considered as 

deterministic guesses, and there is no associated estimate of confidence level indicating the odds of 

observing such inference if additional site investigations are conducted. However, such information is 

critical for decision making and downstream design. Providing an estimate of confidence level of the 

unobserved parts of the subsurface model is one of major gaps in the current subsurface modeling 

workflow. 

2) Distinguishing two dimensions of uncertainty (epistemic and aleatoric uncertainty) in subsurface 

modeling. 
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According to Wikipedia, Uncertainty can be classified into two categories and formally defined as below: 

Aleatoric uncertainty: Aleatoric uncertainty is also known as statistical uncertainty, and is representative 

of unknowns that differ each time when we run the same experiment. 

Epistemic uncertainty: Epistemic uncertainty is also known as systematic uncertainty, and is due to things 

one could in principle know but do not practice. This may be because a measurement is not accurate, 

because the model neglects certain effects, or because particular data has been deliberately hidden. 

In brief, an aleatory concept of uncertainty involves unknown outcomes that can differ each time when 

one runs an experiment under similar conditions, whereas an epistemic concept of uncertainty involves 

missing knowledge concerning a fact that either is or is not true. We assert that the philosophical 

bifurcation of uncertainty mirrors ambivalent intuitions that reside within most decision makers. Returning 

to the subsurface modeling, the question of whether or not a certain type of soil/rock can be observed 

within the site could be construed as entailing primarily epistemic uncertainty, whereas the question of the 

spatial distribution of this type of soil/rock could be construed as entailing primarily aleatory uncertainty. 

We argue that these forms of uncertainty are not mutually exclusive – indeed, the question of whether the 

accurate soil/rock profile can be predicted involved both kinds – and that there are systematic planning 

consequences of whether one form of uncertainty or another is particularly salient to a decision maker. 

Distinguishing and modeling Epistemic from Aleatory Uncertainty is missing from current subsurface 

modeling workflow. 

3) The way to quantify the uncertainties. 

Methodologies for empirically quantifying uncertainties in cross sections derived from borehole data have 

been developed. In these methodologies, a portion of data are withheld from a set of boreholes that are 

interpreted by geologists to create cross sections. The withheld data are used to measure the difference 

between the interpretations and the true geology, as recorded in the withheld borehole. This difference is 

referred to as the error in the interpretation. The distribution of these errors, and hence the uncertainty, is 

analyzed statistically to identify factors (such as the local density of boreholes) that determine how the 

uncertainty behaves. The intention is to see if prediction of uncertainty is possible in future geological 

settings by using this behavior. Empirical quantification of uncertainty is time consuming and requires 

dense high-quality data sets, ideally with multiple geologists, to create a range of modeled geologies. In 

situations where these dense borehole data sets and geologists are not available, there is no proven 

methodology to follow. From many emerging methods, in recent years, data-driven and AI based 

methods seem to be promising. 

A.5 Bayesian inferential framework and Markov random fields 

To cope with the uncertainty involved in the determination of the stratigraphic structures, probabilistic 

approaches including Bayesian method (Wang et al. 2013), clustering method (Liao and Mayne 2007), 

wavelet transform modulus maxima method (Ching et al. 2015) and machine learning-based methods 
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(Wang et al. 2018) have been developed. On the basis of the stratigraphic structures obtained at 

borehole locations, the stratigraphic configuration at the site could be interpreted from the spatial 

interpolation of the boundaries between adjacent strata (Chen et al. 2018; Li et al. 2015; Patel and 

McMechan 2003); the uncertainty in the stratigraphic configuration can be explicitly characterized with the 

probabilistic approaches that are based upon coupled Markov chain (Elfeki and Dekking 2001; Hu and 

Huang 2007; Qi et al. 2016) or stochastic Markov random field (Li et al. 2016; Norberg et al. 2002; Wang 

et al. 2016). To summarize, the uncertainty of the interpreted geological model can be well characterized 

with the probabilistic approaches, which is composed of two major components: Bayesian machine 

learning and stochastic model. 

1) Bayesian machine learning—the engine of stochastic pattern recognition 

Fundamentally, the construction of subsurface model, regardless of being performed by engineers or AI 

algorithms, is a process of inferring a subsurface model based on local and sparse investigation data. 

The incompleteness in subsurface sensing/probing data means that the inference should be performed 

under the guidance of prior knowledge regarding the spatial correlation, structures, and geological 

histories, and that the uncertainties associated with such inference need to be well quantified. Bayesian 

machine learning (BML) is an interdisciplinary field between machine learning and Bayesian inferential 

framework. The former is capable of recognizing abstract patterns and modeling systems with high 

complexity. The latter enables principled uncertainty estimates, and provides a formal framework for 

encoding human’s prior knowledge into a proper probability model. The selection of this probability model 

will be of great relevance to the performance and capacity of the developed interpretation and modeling 

framework. The details will be introduced in the following section. Typically, the subsurface space can be 

abstracted into a two-level hierarchical model as shown in Figure A3. The first level is referred to as the 

physical space, which corresponds to the spatial distribution of various types of soils and rocks in the 

subsurface space. This spatial distribution can be described using a spatial correlated categorical model 

based on Markov process (i.e., Markov random field). The second level is referred to as the feature 

space, which represents the variation of the measures (e.g., density, moisture content, permeability, 

strength, CPT sounding, and SPT N values, etc.) of a single type of subsurface soil, due to the associated 

inherent heterogeneity. Gaussian assumptions (or log-normal assumptions) can be employed to describe 

such variation of soil properties. Both of the Markov assumption and Gaussian assumption have long 

been utilized and validated in existing studies as mentioned above. However, each of them cannot be 

considered as a comprehensive model for subsurface interpretation and modeling. The Markov 

assumption alone cannot reflect the variability of soil properties; whereas soil classification only based on 

Gaussian assumption is vulnerable to the noise of the subsurface data — the interpreted soil stratification 

is typically unrealistic, manifesting as an excessively frequent change of soil types along depth. Our 

previous investigations (Wang et al. 2018; Wang et al. 2019; Wang et al. 2018) are the pilot efforts to 

combine these two assumptions into a hierarchical model, which enables a complete integration of 

human prior knowledge of the subsurface space with measurable uncertain expression. In addition, from 
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the perspective of model compatibility, such combination is intuitive, as the soil sampling methods and 

visual/lab inspection provide direct soil label data in the physical space and the in-situ tests and/or 

geophysical surveys provide measurements of the soil engineering features in the feature space. 

Therefore, the developed hierarchical model provides a solid underlying framework that enables fusion of 

diverse subsurface data from different sources and modeled in a unified fashion. 

 
 

Figure A3 Schematic diagram of the developed hierarchical subsurface conceptual model. 

Given the hierarchical subsurface conceptual model as introduced above, the interpretation of subsurface 

data is essentially a Bayesian inferential classification problem that is based on the similarity of soil 

property measures in the feature space with consideration of their spatial correlation (aka. spatial pattern) 

in the physical space. 

For an engineering project site with multiple types of subsurface data collected at multiple locations, there 

are two potential interpretation schemes. The customary scheme is to interpret these data separately, 

and then manually integrate the obtained local stratification into a complete 3D model. This workflow is 

subjective and deterministic. The other scheme is to fuse the subsurface data at various locations with 

multiple data types and interpret them jointly in a unified soil classification system. Our pilot studies 

demonstrate that the data fusion based joint interpretation scheme has considerable advantages over the 

conventional interpretation scheme in two aspects. First, from the statistical perspective, additional data 

samples can provide more complete and enhanced statistical information for each cluster and thereby 

significantly improve the accuracy of clustering results. Moreover, joint interpretation of subsurface data 

obtained using multiple site investigation methods can benefit from the “sense of complementary” among 

different measures; thus, it can further eliminate potential conflicts and lead to consistent interpretation 

results. More importantly, the capability of joint interpretation serves as the solid assurance of the 

scalability of the Bayesian inference process, as it provides a reliable way to integrate additional collected 

subsurface data. To implement such joint interpretation scheme, one typical challenge is to fuse various 

measures into one single correlation structure while considering various credibility of different measures 

due to their own measurement mechanisms. This challenge can be addressed by introducing supervised 

learning or semi-supervised learning algorithms into the unsupervised clustering approaches to honor the 

correlations among the diverse subsurface measures. The Bayesian inference of the hierarchical model 
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may involve sampling in high-dimensional parameter space for estimating the posterior probability. To 

enhance efficiency of such inference, Advanced Markov Chain Monte Carlo (MCMC) sampling schemes 

have been developed to implement the Bayesian inference numerically. Some most recent techniques 

that mentioned above have already been implemented in the developed subsurface modeling program. 

2) Markov random fields—mathematical representations of spatial heterogeneity 

The spatial distributions of subsurface soils and the associated engineering features possess certain 

spatial patterns, which are caused by the natural formation and evolution processes of the subsurface 

space. Given the localized interpretation results (i.e., the localized subsurface stratification and soil 

property estimates), the construction of a complete 2D/3D subsurface model requires adequate 

understanding and effective reproduction of these spatial patterns. To be more specific, the subsurface 

spatial pattern can be divided into two categories: the stationary pattern and the non-stationary pattern. 

The former reflects the underlying subsurface features such as the soil composition and the basic texture 

of their spatial distribution, which are largely determined by the same or similar soil forming processes. 

The latter is of great relevance to the specific local geological activities, such as land uplift and folding. 

The real-world subsurface configurations can be considered as an overlaying of the non-stationary 

localized pattern and the large-scale stationary pattern. 

Our preliminary work on remote sensing and geophysical measurements (Wang et al. 2019; Wang et al. 

2016) indicate that Markov random fields (MRFs) can be used to mimic the stationary spatial textures and 

patterns of real-world subsurface. To be more specific, the discretized subsurface can be represented as 

an undirected graph model in which each soil pixel (in 2-D physical space) or voxel (in 3-D physical 

space) can be spatially correlated with the nearest neighboring pixels/voxels. This model setting is used 

to model the basic observed fact that similar soil/rock types are usually close to each other and form 

layered structures. The anisotropy is usually controlled by setting the parameters in the Markov random 

field models. Machine learning based pattern recognition algorithms can extract the stationary spatial 

pattern of subsurface from either continuous geophysics measurements or sparse borehole observations, 

through a Bayesian inference approach as mentioned above. 

For the non-stationary pattern, it can be partially determined by existing geologic knowledge, such as 

geologic map, if applicable. In most cases that geologic information is missing or insufficient, a 

straightforward and effective alternative is to perform conditional stochastic simulations based on the 

obtained stratification results at local points and the developed conceptual model to sample all the 

possible trends. The non-stationary behavior is controlled by modifying the MRF parameters locally 

according to existing local prior knowledge. 

Once the spatial patterns are extracted, they can then be encoded into proper random field models and 

reproduced in the generated subsurface realizations. Proper forward stochastic simulation techniques are 

employed to generate continuous 2D/3D subsurface models. Advanced forward stochastic simulation 
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scheme, such as parallel Gibbs sampler has been implemented in the developed subsurface modeling 

program to improve the simulation efficiency.
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Appendix B: Pathway for converting the existing program into a ready for 

implementation web-based program for ODOT 

At the current stage, the python implementation of the Bayesian machine learning and Markov random 

field simulator have been well developed. The program packages are ready to use within a python 

integrated development environment (py-IDE). The DIGGS compliant xml files can be directly read and 

parsed from hard disk onto high-speed memory and processed by the paralleled programs. After several 

validation using real-world datasets, the overall performance is satisfying as a prototype in the developing 

stage. 

The next step should be exploiting the pathway for converting the existing python program package into a 

usable web-based application so that it is robust, easy to use, and free from maintenance at the user end. 

We will introduce three different strategies. 

B.1 Remote SSH based command line interface 

Practically every Unix and Linux system includes the ssh command. This command is used to start the 

SSH client program that enables secure connection to the SSH server on a remote machine. The SSH 

command is used from logging into the remote machine, transferring files between two machines, and for 

executing commands on the remote machine. The SSH command provides a secure encrypted 

connection between two hosts over an insecure network. This connection can also be used for terminal 

access, file transfers, and for tunneling other applications. Graphical X11 applications for graphical 

interface can also be run securely over SSH from a remote location. 

The developed python program can be deployed on a server with a public web address so that it can be 

visited and connected by any computer connected into internet. The SSH can be used to encrypt the data 

traffic between the user end and the server end. The raw data files and the processing executable script 

file or batch file can be transferred to the server and run at the server. Then the analyzing results can be 

sent back to the user end via SSH interface. 

The advantages of this strategy are listed below: 

1) There is no need of additional interface development; 

2) Directly using python programming language for flexible usage of the developed program; 

3) Independent sever with full software management authority. 

The disadvantages include: 

1) No graphical interface and hence not user friendly; 

2) Raw data needs to be transferred to the server via SSH; 

3) A py-IDE is needed at the user-end for editing python scripts. 
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B.2 Internet based Web Browser User Interfaces 

An internet based web browser interface can be developed as a frontend of the developed python 

program. The key function of this interface will be communicating the user with the backend regarding 

data transferring and processing. There will be no computation process at the front user end and the only 

thing needed at the front end is a common web browser. This strategy is highly recommended and the 

benefits of Web Browser User Interfaces can be summarized as follow: 

1) There is no need to manage individual software/program installs and updates whenever there is a 

change to the software. What’s more, if there is a security vulnerability on the network, the only thing 

needs to be done is update the server and everyone will be updated to a new version all at once. This is a 

huge time saving benefit of building products that utilize a web browser interface. 

2) There is no need to verify that the software will work on various combinations of hardware and 

operating systems since the web interface is only a communication tool instead of running programs 

locally. Building a web browser interface means that any customer on any combination of hardware and 

operating system can access and maximize their use of the developed software. 

3) There is no need to worry about compatibility between a graphical user interface and the version of the 

actual program at the server end. 

4) A web browser means that one doesn’t have to worry about transferring settings or configuring 

firewalls—the users can access the software from multiple work locations with ease. When log in, there 

are no files to transfer—all the work will be saved from the last instance. 

5) It is possible to work with multiple tabs open simultaneously for parallel job submitting. 

6) The web browser interface can be accessed from phones and tablets. Software is more accessible. 

Besides, there are also some long-term value of Web-Based user interface: 

First, it’s easier to develop web-based user interface compared with other solutions. Developing an 

independent graphical user interface requires a special set of tools and requires a good knowledge of .net 

and Java, but it’s easier to develop web applications using JavaScript, HTML, and CSS. And when it 

comes time to test the product, a web-based product allows developers to do more automated testing. 

As web services become increasingly prevalent, additional function can become a natural add on when 

we already have a web server running the product. Building a web-based user interface means that we 

have laid the foundation for moving toward more web services. 

Therefore, building a web-based user interface means that the majority of the users will be accustomed to 

navigating a web browser. Ultimately, a web-based user interface also allows us to improve the program 

faster and get new features and versions out to customers at a better pace. 
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B.3 Python program on a cloud platform 

In recent years, software deploying and running are increasingly moving in the cloud, allowing 

programmers to access and collaborate on their projects on the go and improve the computing 

performance to some extent. Numerous such services have been launched in the past few years. 

Serverless computing is one of these services. It is a cloud-computing execution model in which the cloud 

provider runs the server, and dynamically manages the allocation of machine resources. Pricing is based 

on the actual amount of resources consumed by an application, rather than on pre-purchased units of 

capacity. Serverless computing can simplify the process of deploying code into production. Scaling, 

capacity planning and maintenance operations may be hidden from the developer or operator. Serverless 

code can be used in conjunction with code deployed in traditional styles. Alternatively, applications can be 

written to be purely serverless and use no provisioned servers at all. 

Google Cloud Platform (GCP) could be a good option to start with. Google Cloud’s serverless platform 

lets the developers write code their ways without worrying about the underlying infrastructure, deploy 

functions or apps as source code or as containers, build full stack serverless applications with Google 

Cloud’s storage, databases, machine learning, and more, and easily extend applications with event-

driven computing from Google or third-party service integrations. They can even choose to move their 

serverless workloads to on-premises environments or to the cloud with great flexibility. Since the source 

code of the developed python program is ready to use and deploy, GCP infrastructure and computational 

resources can be leveraged for high performance computing capabilities. 

B.4 Steps toward the web-based application 

Based on the above information, in this section, a roadmap of the steps toward the web-based application 

is provided. 

Step 1: local server configuration, source code deploying, and testing 

As a conservative and simple starting point, a physically standalone computer will be configured and set 

as a server. The developed source code will be deployed onto this server. A virtual backend will be 

created and tested. Two types of frontend (SSH and web browser user interface) will be tried. A simple 

version of the web browser user interface will be developed. The focus will be the speed and quality of 

data transferring, testing and identifying potential issues, and verify the architecture of the web-based 

application. 

Step 2: Detailed design and development of the web browser user interface 

Based on the outcome from Step 1, the frontend will be further modified and refined according to ODOT’s 

preference and specific requirements so that the user interface can better fit into ODOT current workflow. 

A beta version will be developed and put it online for testing. Problems and errors will be identified and 

fixed. This step is straightforward as all the tools and methodologies are well developed and readily 

available on the market/community. 

https://en.wikipedia.org/wiki/Cloud-computing
https://en.wikipedia.org/wiki/Execution_model
https://en.wikipedia.org/wiki/Software_deployment
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Step 3: Testing the beta version using several real-world projects 

The beta version web browser interface will be tested by the ODOT engineers and staff. Comments and 

issues will be reported to the developing team. The developing team will maintain and modify the source 

code of the frontend at the server side. The user can directly access to the updated version via a common 

web browser. 

Step 4: Deploying the program on the cloud computing platform for better scalability and performance 

After accumulating enough experiences from Step 1-3 and the overall architecture and workflow are 

stable. The entire product can be moved to the cloud computing platform for better scalability and 

performance. Google Cloud Platform can be a good start but several possible options (Amazon AWS, 

IBM Cloud, etc.) will be compared and evaluated for python compatibility and runtime performance. A 

cost-benefit analysis will also be carried out as a basis for further commercialization.
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