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1. What is Geosetta?
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Geosetta is a non-profit Maryland based company =
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Geosetta is providing a platform for hosting subsurface/geotechnical data from
various publicly funded sources throughout the United States.

Geosetta is developing geospatial and augmented reality visualization tools, with
machine learning techniques.

Geosetta provides a preliminary understanding of the anticipated subsurface
conditions at any project site. And is a tool to plan an efficient/focused

subsurface exploration program.
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2. Mission

Presenting and deriving valuable deliverables from publicly
funded geotechnical data for the benefit of the geotechnical

and civil engineering profession.
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Standard Penetration Testing

Data Sources
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Auger Testing
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Foundation Installation
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Data Examples

« Soil Strength

« Ground water Level
 Depth to Rock

« Soil Composition

* Rock Composition

« Rock Quality
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Existing Data Formats

Government agencies spend millions of dollars performing geotechnical testing for their projects
each year. The results of this testing is generally stored in paper logs, or single standalone electronic

files.

YM’;ﬂrvﬂ’m Foundaton Desgn
Créaro
RECORD OF BOREHOLE No B-1 10F 1 METRIC
wP. LOCATION STA 23+ 9217, 0/S5.2m RT. CLHAY.9 ORIGINATED BY _AB
DIST__3 BOREHOLETYPE _C T SOUD AUGER & CONE TEST COMPILED BY _cD
DATUM _GEODETIC 11602-12602 CHECKED BY_ ER
NE
SAMPLES w
Byl 3 ™ RS ruasnc i, L.m‘l e
5 9 |28] & D o & 8 ow [ Zeer el 5
=215 = 3 g 3
FEv oI 25| & [SHEARSTRENGTHKPa " s b ]
DEPTH| I g | 2|38| £ |o woonAne 4+ FELOVANE v
HE = |88] & [o avoxmmmna x isvae | wATERConTENT (M
u87 @ o L 0 10 0 m®
00|

U467,

g

/e | | | |

| 53]
e

T
X

3396]
51

1355)

RO 1 0o

TN
IE‘

CNTARIO MOT ONTARIO MOT GPJ ONTARIO MOT GDT 3012103

353 Mumbersrferto 3%
+33: Rt 0% STRAINAT FALURE

These datasets are..
* not GIS enabled
* not easily extractable or searchable

e (difficult to use and visualize
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Geosetta’s Foundation.

Procedures to automatically extract gINT or diggs datasets into an postgreSQL
database and vise versa. (IE generate gINT or diggs files on demand from the

database.)
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Geosetta’s Foundation.

* Built a Esri agol based tool for the requesting drilling, tracking testing, and
displaying historic data.
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Geosetta’s Foundation.

Developed machine learning methods to train Deep Neural Networks off historic

drilling data.
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Supervised Learning

Reinforcement
Learning
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Geosetta’s Foundation.

* Developed machine learning methods to train Deep Neural Networks off historic
drilling data.

Methods Modules Tasks/Deliverables L I~

Yolo Object
Recognition

« Ball Detection for slope movement
« Object Identification and inventory building (xlite, signs,striping, etc)

Fast ai Tabular
Data (or random
forests)

+ Pavement thickness prediction (core & construction history)
+ SPT testing data predicition (soil type, strength, rock depth, water depth)
« Rainfall Estimates

Supervised Learning

General Machine

Vision in Python Aran QA/QC (Blurry under exposed, over exposed photos, etc.)

Machine Vision

T 1 11

E o Finite Markov

g £ Decision

g E —_—> Processes/ « Predictions for Small initial datasets that improve overtime
£ Monte Carlo

é Methods
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Geosetta’s Foundation.

* Developed machine learning methods to train Deep Neural Networks off historic
drilling data.

Methods Modules Tasks/Deliverables

Yolo Object
Recognition

« Ball Detection for slope movement
« Object Identification and inventory building (xlite, signs,striping, etc)

Fast ai Tabular
Data (or random
forests)

+ Pavement thickness prediction (core & construction history)
+ SPT testing data predicition (soil type, strength, rock depth, water depth)
« Rainfall Estimates
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General Machine

Vision in Python Aran QA/QC (Blurry under exposed, over exposed photos, etc.)

Machine Vision

T 1 11

E o Finite Markov

g £ Decision

g E —_—> Processes/ « Predictions for Small initial datasets that improve overtime
£ Monte Carlo

é Methods
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Geosetta’s Foundation.
* Developed machine learning methods to train Deep Neural Networks off historic
drilling data.
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Methods Modules Tasks/Deliverables 2?

=

= Yolo Object « Ball Detection for slope movement
= Recognition « (Object Identification and inventory building (xlite, signs,sfriping, efc)
]
-T]
J Notes:
# *  Works for photo and video
E « Find present or missing objects for building Inventories
s Fast ai Tabular = Pavement thickness prediction (core & construction history) . Identify issues in real time from video
© Data (or random :D « SPT testing data predicition (soil type, strength, rock depth, water depth)
forests) « FRainfall Estimates

NON-INV__DIR MP 6.509__04/20/2018

DIR MP 23.404 04/30/2018
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Geosetta’s Foundation.

* Developed machine learning methods to train Deep Neural Networks off historic
drilling data.
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Geosetta’s Foundation.

* Developed machine learning methods to train Deep Neural Networks and
reinforcement learning off historic drilling data.

Training Neural Networks

L Variables
« Northing
Historic « Easting
D[;igiizg J> « Elevation >
| « SPTN
i  Infiltfration
« Grainsize
1. 2.
Collect Historic  Extract meaningful
Drilling variables

*Step 3 is a recursive process where
the network geometry is
optimized/derived for the dataset.
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Build tools that utilize the
calculated Numerical Model

Process variables through a
Neural Network*
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Geosetta’s Foundation.

* Developed machine learning methods to train Deep Neural Networks and
reinforcement learning off historic drilling data.

Methods Modules

Yolo Object
Recognition
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Fast ai Tabular
Data (or random
forests)
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Supervised Learning

Pros:

Tasks/Deliverables

Ball Detection for slope movement
Cbject Identification and inventory building (xlite, signs,siriping, efc)

Pavement thickness prediction {core & construction history)
SPT testing data predicition (soil type, strength, rock depth, water depih)
Fainfall Estimates

« After fraining you can immediately quantify the accuracy
 Modelisready to go right after training
* You can turn discrete data sets info continuous data

Cons:
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Neural Net Based

« Requires very large training sets (transfer learning can help for specific data sefts))

« Most of the development time is spent finding and cleaning historic data

« Requires retraining on a routine basis resulting in static models between training sessions

Geosetta



Geosetta’s Foundation.

* Developed machine learning methods to train Deep Neural Networks and
reinforcement learning off historic drilling data.

Methods Modules Tasks/Deliverables
= Yolo Object « Ball Detection for slope movement
= Recognition « (bject Identification and inventory building (xlite, signs, striping, efc)
g
-
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s Fast ai Tabular « Pavement thickness prediction (core & construction history)
@ Data (or random « SPT testing data predicition (soil type, strength, rock depth, water depih)
forests) « FRainfall Estimates
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Vision in Python Aran QAQC (Blurry underexposed, orverzposed photos, etc)

Machine Vision
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Geosetta’s Foundation.

* Developed machine learning methods to train Deep Neural Networks and
reinforcement learning off historic drilling data.

starting position

Customer Makes a New Request for Soil SPT
Data

System makes a
prediction drilling data
and anticipated
schedules based on
historic data and learns
form the result.
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Provides customer with a predicted project
timeline based on the unique project values.
(Project Location, drilling quantity, time of
year, recent productivity)
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Methods Modules Tasks/Deliverables L

Al——

Monte Carlo
Methods

Reinforcement
Learning

Reinforcement Learning

Pros:

Model is tfrained after each prediction, and does not require scheduled updates
Works with small datasets that grow overtime

Best for building predictions for processes that quickly change over time

Not a black box and is easier to understand and set logical starting values.

Example: Estimating field testing delivery dates. (quickly changes based on available

ﬁgl,i
Finite Markov ‘\ \ \\\/ {Lé
Decision \ \! T
Processes/ :> « Predictions for Small initial datasets that improve overtime \ ,
A

resources)

Ccons:

Unless logical values are set Initially, at the beginning the models will appear
unintelligent as training/exploration occurs

Recursive process that
balances estimation and
exploration over time
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Geosetta’s Foundation.

* Developed a pipeline to automatically generate point clouds from State DEM data and
Satellite Imagery and combine this with machine learning based predictions.
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Geosetta’s Foundation.

* Developed a pipeline to automatically generate point clouds from State DEM
data and Satellite Imagery and combine this with machine learning based
predictions.

xyz (point cloud)

Xyz (DEM)

S R

xyrgb (satellite Imagery) Geosetta



Geosetta’s Foundation.

* Developed a pipeline to automatically generate point clouds from State DEM
data and Satellite Imagery and combine this with machine learning based
predictions.

xyz (point cloud)
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xyrgb (satellite Imagery) Machine Learning xyz(var)
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Geosetta’s Foundation.

* Developed a pipeline to automatically generate point clouds from State DEM
data and Satellite Imagery and combine this with machine learning based
predictions.

s

xyzrgb (point cloud)

Easting
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Where do we go from here?:
Geosetta is looking for public and private agencies that are interested in partnering.

Please contact us if you are

A DOT personnel who can streamline the process of making its Geotechnical test data available.
e You are at an agency or company who would value having access to a dedicated custom portal for your

exploration data in a GIS tool.

Email us at info@geosetta.com

Geosetta


mailto:info@geosetta.com

