

Contact: David Burggraf

Suite 1300, 409 Granville Street

Vancouver, BC V6C 1T2

Canada

Phone: +1 (604) 484-2750

DIGGS V2.0.a Documentation

Date: June 30, 2012

Prepared for: DIGGS

DIGGS V2.0.a Documentation

 Page ii

Table of contents

Contents

Glossary of Terms and Abbreviations ... 9

1 Executive Summary ... 12

2 Introduction .. 21

2.1 Document Purpose .. 21

2.2 DIGGS Scope .. 21

2.3 DIGGSML Overview .. 22

2.3.1 Feature Model Overview .. 23

2.3.2 DIGGS Applications ... 26

2.4 DIGGSML Repository Location .. 26

3 DIGGS Revision History from V1.0a to V2.0a ... 27

3.1 DIGGS 1.0a ... 27

3.1.1 Independent Review of DIGGS 1.0a Schemas ... 27

3.2 DIGGS 1.1 ... 28

3.2.1 Validaiton Performance Assessment ... 28

3.2.2 Complexity Assessment ... 29

3.2.3 Overview of Changes in V1.1 .. 29

3.2.4 Specific XML Changes in V1.1 .. 30

3.3 DIGGS 1.2 ... 37

3.3.1 Summary of Changes in V1.2 .. 37

3.4 DIGGS 2.0a ... 38

3.4.1 Summary of Changes in V2.0a .. 38

4 DIGGS 2.0a Structures and Organization ... 40

4.1 Naming and Identification .. 40

4.1.1 Authorities and Namespaces ... 40

4.1.2 DIGGS URN Identifier Structure .. 42

4.1.3 DIGGS Feature Identifiers and References ... 44

4.2 DIGGS Repository Organization .. 46

4.2.1 Official Schemas .. 46

4.2.2 Data .. 49

4.2.3 Dictionaries .. 50

DIGGS V2.0.a Documentation

 Page iii

4.2.4 CodeLists ... 56

5 DIGGS 2.0a Feature Model... 59

5.1 Feature Properties and Attributes .. 60

5.1.1 Named Features and Inherited Properties ... 60

5.2 DIGGS Feature Classes and Objects .. 62

5.2.1 Projects .. 63

5.2.2 Sampling Features ... 66

5.2.3 Measurement ... 93

5.2.4 SamplingActivity ... 98

5.2.5 Sample ... 101

5.2.6 LayerSystem .. 105

5.2.7 Group ... 106

5.3 Feature Metadata .. 107

6 DIGGS 2.0a Schema Complexity Evaluation .. 113

6.1 Schema Load and Validate Performance ... 113

6.1.1 Results ... 114

6.2 Model Complexity assessment .. 115

6.2.1 Options Used for Oxygen V14.0 Random Instance Generation 115

6.2.2 Results ... 118

7 Specialized DIGGS Tools ... 122

7.1 Overview.. 122

7.1.1 DIGGS Excel Tool .. 122

7.1.2 DIGGS KML Tool ... 123

7.2 DIGGS Excel Tool Installation .. 124

7.2.1 DIGGS Excel Tool Operating Environment ... 124

7.3 Using the DIGGS Excel Tool .. 127

7.3.1 Convert a DIGGS GML File to an Excel Spreadsheet ... 127

7.3.2 View the DIGGS Data in Excel .. 128

7.3.3 Navigating the DIGGS Data Worksheets ... 138

7.3.4 Save the Converted Excel Spreadsheet .. 139

7.3.5 Clear the Excel Spreadsheet ... 140

7.3.6 Configuration Options .. 141

7.4 DIGGS KML Tool Installation ... 143

7.4.1 DIGGS KML Tool Operating Environment ... 143

DIGGS V2.0.a Documentation

 Page iv

7.5 Using the DIGGS KML Tool ... 146

7.5.1 Open the DIGGS KML Tool ... 146

7.5.2 Process a DIGGS File .. 147

7.5.3 View the KML File .. 149

7.5.4 Exit the Converter .. 149

7.5.5 Configuration Options .. 150

7.5.6 Defining Styling for the Output KML... 151

8 Future Enhancements .. 165

9 Bibliography ... 166

Appendix A. DIGGS URN Registration RFC to IANA ... 167

Introduction .. 167

Namespace ID ... 167

Registration Information ... 167

Declared registrant of the namespace .. 167

Designated contact person .. 168

Declaration of syntactic structure ... 168

Relevant ancillary documentation .. 168

Identifier uniqueness considerations .. 168

Identifier persistence considerations .. 169

Process of identifier assignment .. 169

Process for identifier resolution .. 169

Rules for Lexical Equivalence .. 169

Conformance with URN Syntax .. 170

Validation mechanism .. 170

URN Scope .. 170

Example ... 170

Namespace Considerations ... 170

Community Considerations .. 171

Security Considerations ... 171

Informative References .. 171

Full Copyright Statement .. 171

Intellectual Property ... 172

Appendix B. GML 3.2 Practices Adopted by DIGGS .. 173

DIGGS V2.0.a Documentation

 Page v

B.1 Coverage Encodings ... 173

Domain Set ... 174

Range Set ... 175

Appendix C. GML 3.3 Extensions Adopted by DIGGS....................................... 180

C.1 Simple MultiPoint Encoding ... 180

C.2 Linear Referencing .. 180

C.2.1 Linear Spatial Reference System .. 180

C.3 Linear Referencing Offset Vectors ... 182

C.3.1 Target namespace ... 182

C.3.2 Introduction .. 183

C.3.3 Vector Offset Linear Spatial Reference System .. 183

Appendix D. DIGGS Change Release Log .. 189

D.1 Version 1.1 .. 189

D.1.1 Change Log 2010-05-18T14:30 ... 189

D.2 Version 1.2a .. 189

D.2.1 Change Log 2010-05-20T12:25 ... 189

D.3 Version 1.2.1 ... 190

D.3.1 Change Log 2010-06-10 .. 190

D.4 Version 1.2.2 ... 193

D.4.1 Change Log 2010-07-01T13:30 ... 193

D.5 Version 1.2.3a ... 194

D.5.1 Change Log 2010-07-06T11:31 ... 194

D.6 Version 1.2.3.b .. 195

D.6.1 Change Log 2010-07-05T12:59 ... 195

D.7 Version 1.2.4.a .. 196

D.7.1 Change Log 2010-07-07T11:20 ... 196

D.8 Version 1.2.4.b .. 201

D.8.1 Change Log 2010-07-08T13:03 ... 201

D.8.2 Change Log 2010-07-12T19:14 ... 202

D.8.3 Change Log 2010-07-20T17:50 ... 203

D.8.4 Change Log 2010-07-23T18:49 ... 205

D.9 Version 1.2.4.c ... 207

D.9.1 Change Log 2010-07-28T17:38 ... 207

DIGGS V2.0.a Documentation

 Page vi

D.10 Version 1.2.4.d .. 209

D.10.1 Change Log 2010-08-06T18:09 ... 209

D.11 Version 1.2.4.e .. 210

D.11.1 Change Log 2010-08-09T13:08 ... 210

D.11.2 Change Log 2010-08-11T12:21 ... 210

D.11.3 Change Log 2010-08-12T12:25 ... 210

D.11.4 Change Log 2010-08-12T16:10 ... 211

D.11.5 Change Log 2010-08-12T16:16 ... 211

D.11.6 Change Log 2010-08-16T11:12 ... 212

D.12 Version 1.2.4.f ... 213

D.12.1 Change Log 2010-08-17T15:21 ... 213

D.13 Version 1.2.4.g .. 213

D.13.1 Change Log 2010-08-26T14:30 ... 213

D.13.2 Change Log 2010-08-26T14:36 ... 214

D.14 Version 1.2.4.h .. 215

D.14.1 Change Log 2011-01-11T10:52 ... 215

D.14.2 Change Log 2011-01-13T09:20 ... 216

D.14.3 Change Log 2011-02-11T14:32 ... 218

D.15 Version 1.2.4.j .. 219

D.15.1 Change Log 2011-05-12T22:36 ... 219

D.15.2 Change Log 2011-05-12T09:15 ... 220

D.15.3 Change Log 2011-05-19T07:15 ... 220

D.16 Version 1.2.4.k ... 220

D.16.1 Change Log 2011-05-19T07:58 ... 220

D.17 Version 2.0a .. 222

D.17.1 Change Log 2012-02-10T12:55 ... 222

D.17.2 Change Log 2012-03-01T14:04 ... 225

D.17.3 Change Log 2012-03-14T00:44 ... 226

Appendix E. DIGGS Meeting Notes .. 227

E.1 Teleconference Meeting Notes 2010-01-06 ... 227

E.2 Teleconference Meeting Notes 2010-01-12 ... 228

E.3 Teleconference Meeting Notes 2010-01-14T07:30 230

E.4 Teleconference Meeting Notes 2010-01-14T08:30 231

DIGGS V2.0.a Documentation

 Page vii

E.5 Teleconference Meeting Notes 2010-01-28T07:30 232

E.6 Teleconference Meeting Notes 2010-01-28T09:00 234

E.7 Teleconference Meeting Notes 2010-02-04 ... 236

E.8 Teleconference Meeting Notes 2010-02-11 ... 237

E.9 Teleconference Meeting Notes 2010-02-18 ... 239

E.10 Teleconference Meeting Notes 2010-02-25 ... 243

E.11 Teleconference Meeting Notes 2010-03-04 ... 246

E.12 Teleconference Meeting Notes 2010-03-16 ... 248

E.13 Teleconference Meeting Notes 2010-03-18 ... 249

E.14 Teleconference Meeting Notes 2010-03-25T07:30 251

E.15 Teleconference Meeting Notes 2010-03-25T10:30 256

E.16 Teleconference Meeting Notes 2010-04-01 ... 262

E.17 Teleconference Meeting Notes 2010-04-08 ... 263

E.18 Teleconference Meeting Notes 2010-04-15 ... 266

E.19 Teleconference Meeting Notes 2010-04-22 ... 268

E.20 Teleconference Meeting Notes 2010-04-29 ... 268

E.21 Teleconference Meeting Notes 2010-05-13 ... 269

E.22 Teleconference Meeting Notes 2010-05-20 ... 270

E.23 Teleconference Meeting Notes 2010-05-27 ... 271

E.24 Teleconference Meeting Notes 2010-06-03 ... 272

E.25 Teleconference Meeting Notes 2010-06-10 ... 272

E.26 Teleconference Meeting Notes 2010-06-24 ... 282

E.27 Teleconference Meeting Notes 2010-07-01 ... 282

E.28 Teleconference Meeting Notes 2010-07-06 ... 287

E.29 Teleconference Meeting Notes 2010-07-08 ... 290

E.30 Teleconference Meeting Notes 2010-07-29 ... 295

E.31 Teleconference Meeting Notes 2010-08-05 ... 296

E.32 Teleconference Meeting Notes 2010-08-11 ... 298

E.33 Teleconference Meeting Notes 2010-08-18 ... 299

E.34 Teleconference Meeting Notes 2010-08-26 ... 302

E.35 Teleconference Meeting Notes 2010-09-16 ... 304

E.36 Teleconference Meeting Notes 2010-09-30 ... 305

E.37 Teleconference Meeting Notes 2010-10-07 ... 307

DIGGS V2.0.a Documentation

 Page viii

E.38 Teleconference Meeting Notes 2010-11-03 ... 309

E.39 Teleconference Meeting Notes 2010-12-15 ... 310

E.40 Teleconference Meeting Notes 2010-12-09 ... 321

E.41 Teleconference Meeting Notes 2011-01-06 ... 323

E.42 Teleconference Meeting Notes 2011-01-28 ... 334

E.43 Teleconference Meeting Notes 2011-02-03 ... 335

E.44 Teleconference Meeting Notes 2011-02-09 ... 335

E.45 Teleconference Meeting Notes 2011-02-17 ... 338

E.46 Teleconference Meeting Notes 2011-03-24 ... 340

E.47 Teleconference Meeting Notes 2011-04-01 ... 342

E.48 Teleconference Meeting Notes 2011-04-07 ... 343

E.49 Teleconference Meeting Notes 2011-05-05 ... 344

E.50 Teleconference Meeting Notes 2011-05-19 ... 347

E.51 Teleconference Meeting Notes 2011-11-02 ... 349

E.52 Teleconference Meeting Notes 2012-01-24 ... 354

E.53 Teleconference Meeting Notes 2012-02-03 ... 356

E.54 Teleconference Meeting Notes 2012-02-10 ... 359

DIGGS V2.0.a Documentation

 Page 9

Glossary of Terms and Abbreviations

The following lists the abbreviations, acronyms, and terms used in this document:

Term or Abbreviation Description

AGS Association of Geotechnical and Geoenvironmental Specialists

(United Kingdom)

COTS Software Custom Off The Shelf Software

CPT Cone Penetration Test

DIGGS Data Interchange for Geotechnical and GeoEnvironmental

Specialists

DIGGSML DIGGS Markup Language

DIGGSNA DIGGS Naming Authority

ebRIM electronic business Registry Information Model

Feature Abstraction of real world phenomena

Feature Attribute or

Property

Captures the defining characteristics of a feature

Feature Metadata Contextual information about the definining

Attributes/Properties of Features

FPS OGC Feature Portrayal Service – a component WMS that

retrieves its data from a WFS

GML Geography Markup Language – A joint OGC and ISO 19136

standard

HREF Hypertext REFerence – An attribute used for linking in both

the W3C’s HTML and XLink standards whose value is the URI

of the web resource pointed to

HTML Hyper Text Markup Language – A W3C standard to describe

web pages

HTTP HyperText Tranfer Protocol – an application layer network

protocol built on top of TCP. Web clients and servers

communicate via HTTP request and response messages

IANA Internet Assigned Numbers Authority

IP Internet Protocol – used with TCP, IP takes care of handling

the actual delivery of the message data

ISO International Organization for Standardization

DIGGS V2.0.a Documentation

 Page 10

Term or Abbreviation Description

KML An earth browser visualization and styling language originally

created by Google, formerly known as Key Markup Language,

now an international standard maintained by OGC.

NID Namespace Identifier

OASIS Organization for the Advancement of Structured Information

Standards

OGC Open Geospatial Consortium

OMG Object Management Group –a not-for-profit computer

industry specifications consortium known for defining and

maintaining the UML specification

RDF Resource Description Framework –a semantic web standard by

W3C

RIM Registry Information Model

SI Système International d'unités – International System of Units

TCP Transmission Control Protocol – a set of rules (protocol) used

along with the Internet Protocol (IP) to send data in the form

of message units between computers over the Internet. TCP

takes care of keeping track of the individual data packets that a

message is divided into for efficient routing through the

Internet

UML The Unified Modeling Language™ – OMG's most-used

specification used for conceptual modeling of data structures

and business processes

URI Uniform Resource Identifier – A unique identifier for a

resource, structured in conformance with IETF RFC 2396

URL Uniform Resource Locator – A location dependent URI

URN Uniform Resource Name – A location independent URI

W3C World Wide Web (W3) Consortium

WFS OGC Web Feature Service

WITSML Wellsite Information Transfer Standard Markup Language – A

petroleum industry standard for technical data transfer

WKT Well-Known Text (WKT) – text based language by OGC/ISO

for representing vector geometry, spatial reference systems,

and transformations between spatial reference systems

DIGGS V2.0.a Documentation

 Page 11

Term or Abbreviation Description

WMS OGC Web Map Service

Xerces J A well-known and rigorous validating XML Parser

implemented in Java and developed by the the Apache

Xerces™ open source project (xerces.apache.org).

XSD XML Schema Definition

XML Extensible Markup Language

XLink XML LINKing Language – A W3C standard that is used to link

XML documents

XPointer XML Pointer Language – a language for locating data within an

XML document

XMLNS XML NameSpace

XSLT Extensible Stylesheet Language Transformation

DIGGS V2.0.a Documentation

 Page 12

1 Executive Summary

The main objectives in the development of DIGGS V2.0a from V1.0a were to:

1. Bring DIGGS into compliance with Geography Markup Language (GML),

2. Address the schema complexity of DIGGS 1.0a and corresponding performance issues

with XML software to remove the technical barriers to adoption,

3. Apply modeling best practices and improve the usability of DIGGS,

4. Update to the latest version of GML,

5. Enrich/refine the geotechnical and geoenvironmental domain model,

6. Improve/test implementability of DIGGS

Much of the technical developments toward the listed objectives were accomplished between

Jan 2011 and June 2012. A brief description of the results for each objective is summarized in

the following table:

DIGGS V2.0a Objective Brief Summary of Results

GML conformance Passed all GML validation tests (see Section 3.2.3 for details)

 Inspection against GML 3.2 and 3.3 conformance clauses

 Automated scan for conformance violations and syntactic conventions
using Galdos GML Software Development Kit (SDK)

Address complexity and
performance

 Several cases of infinite recursion were detected and removed from the
schemas

 A GML profile was created to eliminate/restrict unused GML elements
and types

 Dependency on WITSML was restricted to just the unit and value types

Modeling best practices and
usability

 Defined and extensible and globally unique identification scheme in
accordance with web identification practices for DIGGS data, codelists,
dictionaries, and other relevant resources (see 4.1.2).

 Used GML 3.2.1 Coverage model for table data in Tests.

 Adopted OGC Observation and Measurement patterns for Monitoring
and Test features

Update to latest GML version DIGGS 2.0a is now based on the Joint OGC (GML 3.2)/ISO
(19136:2007) standard

 DIGGS 2.0a also leverages selected new features of GML 3.3
o Linear spatial referencing (extended in the GML 3.3 standard by

3D requirements from DIGGS)
o Compact Multipoint encoding

Enrich/refine domain model Restructured geotechnical and geoenironmental elements and types:

 Made the Project feature mandatory in all DIGGS data and restricted
the occurrence so that only one is permitted. All other features in the
DIGGS file reference the single project

 Test data structure align more closely with the OGC Observations and

DIGGS V2.0.a Documentation

 Page 13

Measurement model

 Separated Sampling and Sampling Activity features to distinguish the
physical sample from the activity that produces it

 Implemented Layer Systems using codelists to define constituents

 Implemented the GML coverage model for encoding CPT, geophysical,
and similar data types

DIGGS implementability Created two software implementations that support DIGGS 2.0a (Excel
tool and KML tool). See user guides in Section 7.

 Created DIGGS CRS dictionary and coordinate transformation tool

 Created web sharable and machine readable codelists

 Created globally unique identification scheme registered with the
Internet Assigned Numbers Authority (IANA)

After the conformance to the latest version of GML was completed, the complexity issue was

solved by restructuring the schema and making use of profiles (subsets with restrictions) of both

GML and WITSML. The use of the GML profile in V1.1 and further profile refinement and

schema restructuring in V2.0a, resulted in a schema model of bounded complexity (with

maximum possible data size less than 1 MB) as illustrated in Figure 1-1.

Figure 1-1: DIGGS dataset size (KB) over 27 different maximum tree depth settings

The complexity was analyzed through ‘stress-testing’ of the DIGGS schemas by generating

random values for all possible elements/attributes, creating the most complicated DIGGS

datasets that the schemas would allow (see Section 6.2 for the detailed methodology). The

DIGGS dataset size would then grow as a function of recursion and nesting levels (tree depth) as

tested over 27 increasing tree depth levels. Figure 1-1 shows V1.0a data increasing exponentially

DIGGS V2.0.a Documentation

 Page 14

without bound in size as compared with the V1.1 and V2.0a data using the same tests and

software environment. The V1.1 data complexity was lower than V1.0a, but recursive loops still

remained in the DIGGS schemas and hence the V1.1 data also grew exponentially without

bound. In V2.0a, all recursion was removed from the schemas and the data size now has an

upper bound (< 800 KB) with the average file size for trials approaching about 500KB. Note

that the maximum recorded file size was 737KB out of several thousand randomly generated

files.

The DIGGS V2.0a schema performance was also noticeably improved with an average schema

loading time of 0.9 seconds (from 156 for V1.0a) and schema validation time of 0.5 seconds

(from 87 seconds for V1.0a).

All of the DIGGS feature data, code lists and dictionaries were designed to be identified and

retrieved over the web. Standard web practices were followed to define globally unique DIGGS

identifiers called Uniform Resource Names (URNs), which were submitted for approval by the

Internet Assigned Numbers Authority (IANA) and summarized in Table 1-2.

DIGGS V2.0.a Documentation

 Page 15

DIGGS URN Identification Structure

urn:diggs:def:RESOURCE_CLASSIFICATION:AUTHORITY[:VERSION_NUMBER][:CODE][:SUB_CODE]

Field Name Description Mandatory
/Optional
Indicator

Field
Values

Comments

urn Required
prefix for all
URNs

Mandatory This field is
fixed

Diggs Namespace
Identifier

Mandatory Diggs Assigned by IANA and requested to be ‘diggs’

Def Indicates that
the resource
is a definition

Mandatory Def There are no other branches of this field to
date, but new branches could be added (e.g.
doc or spec)

RESOURCE_
CLASSIFICATION

The type or
classification
of the
resource.

Mandatory codelist
crs
dictionary
feature
uom

'feature' is used to identify a feature instance

Other RESOURCE_CLASSIFICATION values
may be added as required. For example, if
CRS components such as datums are added to
the DIGGS CRS Dictionary, this scheme will be
updated accordingly.

AUTHORITY The
maintaining
authority of
the resource

Mandatory AGS
Caltrans
DIGGS
EPSG
OGC
POSC
SI
USGS

Other AUTHORITY values may be added as
required.

Note: the concept of AUTHORITY is extended
to cover dictionaries. For example, the EPSG
(CRS dictionary) is considered an acceptable
AUTHORITY for the CRS resource type (even
though the Oil and Gas Producers (OGP) is the
organization that approves and authorizes the
EPSG CRS dictionary releases

VERSION_
NUMBER

Indicates the
release or
version
number

Optional String
characters
representing the
version (e.g.
2.0a)

If VERSION_NUMBER is omitted but CODE is
present, :: should be used between
AUTHORITY and CODE. The
VERSION_NUMBER shall be omitted when
used as an identifier of resource types:
dictionary, cnode (including featureType,
attributeType, listedValue) or slot, in the
versionless FDDs such as the NFCD.

CODE The code or
local identifier
of the
resource (e.g.
gml:id value)

Optional String
characters
representing the
code (e.g.
CRS20a)

For some codespace values the AUTHORITY
alone is sufficient, in which cas CODE can be
omitted and VERSION_NUMBER may be
omitted

SUB_CODE The sub-code
or local
identifier of
the resource
(e.g. gml:id
value)

Optional String
characters
representing the
subcode (e.g.
246tcp)

The sub-code is populated e.g. when the code
corresponds to a dictionary or codelist that has
sub-entries

Table 1-2: Tabular Summary of DIGGS URN Identification Structure

DIGGS V2.0.a Documentation

 Page 16

DIGGS feature instances carry references to other: features, objects, metadata, code lists, units,

and CRS dictionaries, which can be retrieved, read and understood by software tools over the

web.

The DIGGS Excel Tool was designed to present the text of DIGGSML data in a human readable

spreadsheet format (Microsoft Excel). Note that the references to DIGGS identifiers are

represented as linked cells in the spreadsheets. An example instance of a DIGGS data file is

shown in spreadsheet format in Figure 1-3.

Figure 1-3: Example DIGGS Data Viewed in DIGGS Excel Tool

Both human readable (spreadsheets and web page tables) and machine readable (XML)

encodings of CRS dictionaries and codelists were also created to support DIGGS data

DIGGS V2.0.a Documentation

 Page 17

documents. Such dictionaries and code lists can easily be made available in open standard

formats over the web and can be viewed in web pages or retrieved programmatically. Example

representations of such DIGGS resources are provided in the following paragraphs.

The DIGGS codelists can be viewed in spreadsheet format as shown in Figure 1-4.

Figure 1-4: Example Code Lists Viewed as a Spreadsheet

Each of the DIGGS codelists can also be viewed as a web page, e.g. the chemical determinand

code list excerpt is shown in Figure 1-5.

DIGGS V2.0.a Documentation

 Page 18

Figure 1-5: Example 246TCP Code in Chemical Determinand Code List Viewed in a Web Browser

The DIGGS 3D Coordinate Reference System (CRS) dictionary also has human readable

visualizations (spreadsheet and web page) and in addition was deployed as an example of an

open standard web service in the DIGGS Demo 3D Coordinate Reference System Registry,

shown in Figure 1-6.

DIGGS V2.0.a Documentation

 Page 19

Figure 1-6: DIGGS 3D Compound CRS Definitions Retrieved from Open Standard Web Registry
Service

All of the DIGGS codelists can be hosted by an open standard web registry service in a similar

way as was done for the DIGGS CRS components illustrated in Figure 1-6.

The DIGGS KML Tool was designed to visualize 3D DIGGS data (primarily location, shape and

identification information) in the popular and freely available earth browser (Google Earth). The

DIGGS KML Tool supports coordinate transformations from DIGGS data to the OGC KML

standard CRS (longitude, latitude, elevation). The DIGGS KML Tool was it is built upon the

open source GeoTools spatial engine that has been extended to support all of the DIGGS 3D

Compound CRS definitions. Linear referenced and planar referenced geometries are also

supported in the DIGGS KML Tool. A sample screen shot of a planar referenced TrenchWall

polygon is shown in Figure 1-7.

DIGGS V2.0.a Documentation

 Page 20

Figure 1-7: Representation of a Planar Referenced TrenchWall Polygon in the DIGGS KML Tool

DIGGS V2.0.a Documentation

 Page 21

2 Introduction

Data Interchange for Geotechnical and GeoEnvironmental Specialists (DIGGS) is a coalition of

government agencies, universities and industry partners whose focus is on the creation and

maintenance of an international data transfer standard for transportation related data. The

coalition came into existence through coordination from the US Federal Highway

Administration sponsoring meetings and eventually forming the pooled fund study project.

2.1 Document Purpose

This document contains user and developer guidance notes and accompanies the alpha release

of the DIGGS Version 2.0a standard (DIGGS2.0a). The guidance notes focus on the changes and

extensions made to the DIGGSML standard since the alpha release of the V1.0a schemas were

published for public comment in 2008. In particular, the user guidance in this report describes

what the DIGGS standard is and how it is used, including the applications available to process

DIGGS. Several examples of DIGGS data instances are shown using screen shots of the DIGGS

Excel Tool and DIGGS KML Tool throughout the document. XML editor tools (e.g. by Oxygen

and Altova) have also been used to display schema diagrams and generate random test data. The

development guidance herein describes the DIGGS schema model, the supporting data

resources (e.g. dictionaries/codelists) and technical structure of the encodings including an

assessment of the DIGGS schema parsing performance and complexity when represented as an

object model.

2.2 DIGGS Scope

DIGGS 2.0a consists of a set of XML schemas, providing a common vocabulary and exchange

model for geotechnical and geoenvironmental data constructs including boreholes, soil testing,

site information and more. The DIGGS2.0a standard includes supporting information resources

such as dictionaries, codelists and identifier names all encoded in machine readable XML that

make use of IANA1 registered DIGGS identifiers. For example the following information

resources have been created and made available in the release of DIGGS 2.0a:

1 The Internet Assigned Numbers Authority (IANA) is responsible for the global coordination of the DNS Root, IP addressing, and

other Internet protocol resources

DIGGS V2.0.a Documentation

 Page 22

1) Coordinate Reference System (CRS) dictionaries containing Compound 3D CRSs that

support DIGGS 3D data worldwide.

2) Units of Measurement (UoM) definitions that support typical measurements recorded by

equipment used to capture DIGGS data.

3) Codelists that specify controlled vocabularies for test parameters, results, measurement

phenomena, and other classifications typically recorded in DIGGS data.

4) Uniform Resource Name (URN) Structure and Governance Policies.

2.3 DIGGSML Overview

The DIGGS schemas are Open Geospatial Consortium (OGC) Geography Markup Language

(GML) application schemas meaning that all schema constructs must derive from GML

elements and types and follow GML's Object/property model, which govern how schema

elements and XML instance documents are constructed. GML is an XML application that

provides a grammar and base vocabulary for describing geographic data. GML was developed in

order to provide a standard means of representing information about geospatial features – their

properties, interrelationships, and so on. Features describe real world entities and are the

fundamental objects in GML. Features can be concrete and tangible, such as boreholes and

trench walls, or abstract and conceptual, such as projects and jurisdictional boundaries.

DIGGS/GML features are described in terms of their properties, which can represent spatial and

temporal characteristics or associations with other features. For instance, DIGGS/GML can

describe the location, shape, and extent of geographic objects as well as properties such as

colour, speed, and density, some of which may depend on time. As it is impossible to describe all

features for all application domains and predict their usage a priori, the GML core schemas do

not fix definitions of specific instantiable feature types such as a trial pits or layer systems.

Rather, specific features are defined in GML Application Schemas, which are created by user

communities such as DIGGS.

GML provides a base of common geographic and geometric constructs (e.g. the AbstractFeature

model, Points, LineStrings, and Polygons) that can be shared and reused by GML Application

Schemas. In turn, the GML constructs are built upon XML constructs such as elements,

attributes, types, datatypes (e.g. integers, strings, dates), international language support, etc. By

building on upon successful existing web technologies, the DIGGS GML Application Schemas

can leverage a whole world of GML and XML Tools.

DIGGS V2.0.a Documentation

 Page 23

Figure 2-1: GML Application Schemas Build on GML and XML

2.3.1 Feature Model Overview

DIGGSML describes the world in terms of features, which represent physical or abstract objects

representing geotechical and geoenvironmental entities (eg. boreholes, samples, etc.) or

processes (projects, tests, etc) that can be transferred as atomic units of information.

2.3.1.1 DIGGS Objects

Features are the primary 0bjects in DIGGS, which are named entities comprised of descriptive

properties. Non-feature objects also exist and are structurally the same as features - but typically

are not shared out of context with their associated features. In DIGGS, objects appear as nested

complex property values of features (a complex property element is one that contains child

elements), e.g. a polygon representation of a trench wall’s surface extent. A layer system defining

soil descriptions is an example of a DIGGS feature, whereas the individual layers contained

within a layer system are just objects that wouldn’t be shared outside of the context of the layer

system. Metadata objects are specially typed objects in GML, which describe contextual

information about features or other objects.

DIGGS V2.0.a Documentation

 Page 24

2.3.1.2 DIGGS Properties

Properties are simply child elements of a feature or object. For example, a numeric result of a

test is a property of the test feature. Figure 2-2 illustrates properties as direct children of a

Borehole feature.

Figure 2-2: A DIGGS Feature or Object is described by its property children

Figure 2-2 also reveals a GML syntactic convention used to distinguish between Objects and

properties; element and type names representing Objects are written in UpperCamelCase and

the property names are written in lowerCamelCase.

2.3.1.3 The GML Object/property/Value Model

The GML Object/property/Value model is partially based on the Subject/predicate/Object

model of W3C’s Resource Description Framework (RDF), which is similar to the OMG’s

Class/association/Class model of UML. The Object/property/Value triple pattern as

implemented in GML facilitates an easy transition and mapping from UML or RDF to GML.

In contrast to legacy GIS approaches, a feature is not defined primarily as a geometric object,

but as a meaningful real world object having spatial and non-spatial properties. For example,

Figure 2-2 shows that a Borehole feature has three simple properties that provide its name,

identifier and reference to the Project the Borehole is associated with. Figure 2-2 also shows two

complex properties that have object values describing the Borehole’s physical characteristics

Feature/Object

property1

property2

…

propertyN

Has A

Borehole

name

identifier

projectRef

centerLine

Has A

holeDiameters

property3

DIGGS V2.0.a Documentation

 Page 25

(centerLine and holeDiameters). Complex properties are used to describe relationships

(associations) between two Objects, where the property name provides the name of the

relationship or possibly the name of the role that the target (or source) value plays in the

relationship –this is illustrated in Figure 2-3.

propertyName

(role/relationship name)
Source
Object

Target
Value

Figure 2-3: Property Names Capture the Relationship with or Role of the Target Value

Figure 2-2 shows that the Borehole feature has a centerLine property. The value of the centerline

property is a geometry object LinearExtent (a one dimensional curve). The property name centerLine

in this case represents the role that the LinearExtent target value plays with respect to the Borehole

source value in the relationship – this is illustrated in Figure 2-4. Note that it is possible to

describe several different relationships between the Borehole and geometry objects. For example

a LinearExtent geometry might also represent the edge or circumference of the top of the Borehole.

The Borehole also has another geometric property named referencePoint that is Point valued, which

represents the location of the center of the base of the Borehole.

 centerLine

Borehole LinearExtent

Figure 2-4: The centerLine Property Captures the Relationship between Feature and Geometry

An object cannot directly have a second object as a child element, only a property element can

be a child of an object, but the property’s value can be an object. The following example shows a

correct example instance illustrating the parent-child element relationships in XML of the

Borehole feature in GML:

 <Borehole gml:id="LB_Webster">
 <gml:name>Long Beach - Webster</gml:name>
 <gml:identifier>urn:diggs:def:feature:USGS:LB_Webster</gml:identifier>
 …
 <centerLine>
 <LinearExtent srsName="urn:diggs:def:crs:DIGGS:26911_5703" srsDimension="3" gml:id="LS0001">
 <gml:posList>387316.665116977 3742645.12297961 7.81507 387316.665116977 3742645.12297961 -
 420.124129847717</gml:posList>
 </LinearExtent>
 </centerLine>
 …
 <holeDiameters>
 <BoreholeDiameter gml:id="bhd1">

DIGGS V2.0.a Documentation

 Page 26

 <diameter uom="in">6</diameter>
 </BoreholeDiameter>
 </holeDiameters>
 …
 </Borehole>

Note that the properties name and identifier are simple property elements in the sense of XML

Schema because their types have simple content (e.g. string, integer, and URI values), possibly

with simple child attributes (but no child elements). The property centerLine on the other hand is

a complex property because its type has complex content because it has a child object element

value (the LinearExtent geometry).

2.3.2 DIGGS Applications

Both Custom of The Shelf (COTS) software (e.g. Saxon, GeoTools, Oxygen, Altova, Galdos GML

SDK, Snowflake GML Viewer, OGC Web Feature/Map/Portrayal/Registry Service

implementations) and specialized DIGGS software (e.g. DIGGS KML and Excel tools) can

process DIGGS data structures for various purposes in varying degrees. For example, some GML

aware COTS applications can detect and extract metadata or geometry types from GML

instances and are designed to handle such typed information for specific purposes. Visualization

applications (e.g. OGC Feature Portrayal Service) will detect and extract geometry properties to

display on a map or earth browser and Registry applications (e.g. OGC Web Registry Service)

can harvest metdata for discovery and archival purposes. Section 7 (Specialized DIGGS Tools)

describe the software support created for DIGGS V2.0.a, namely the DIGGS Excel Tool and the

DIGGS KML Tool.

2.4 DIGGSML Repository Location

The official DIGGS2.0a standard is available to the public from the DIGGSML web home page

managed at http://diggsml.org/ In particular the schemas can be accessed at

http://diggsml.org/2.0a/schemas.

http://diggsml.org/
http://diggsml.org/2.0a/schemas/

DIGGS V2.0.a Documentation

 Page 27

3 DIGGS Revision History from V1.0a to V2.0a

Several changes were made to the DIGGS 1.0a schemas following the submission of the V1.0a

schema evaluation reports (see [1], [6], [9]). The release of DIGGS v1.1 applied the most

straightforward fixes as recommended in [1], [6], and [9], i.e. the domain-independent schema

issues, to quickly bring the DIGGS schemas into conformance with GML. The DIGGS V1.1

release (see [2]) also migrated the version of GML from V3.1 (see [3]) to the latest OGC version

at that time, GML 3.2, mainly to benefit from the stability of the ISO TC211 (geographic

information) adoption in that release of the GML Standard, published as ISO 19136 (see [7]).

The development of DIGGS v1.2 applied additional changes, including DIGGS domain-

dependent issues, which required further discussion with the DIGGS core SIG and other

stakeholders. During the development of DIGGS 1.2, new incremental extensions to GML 3.3

were being developed at OGC in parallel with the DIGGS development. The GML 3.3 extensions

started in 2011 and were officially released in January 2012 (see [8]). The DIGGS schemas made

use of some of the GML 3.3 extensions, namely linear referencing and the simplified multi-point

expression, which started to be applied in draft form at DIGGS V1.2.4 and continued through to

the development of the 2.0a release. Examples of the use of the GML 3.3 extensions into DIGGS

2.0a are included in this documentation (e.g. see Figure 5-10, Figure 5-15, Figure 5-26 followed

by example instances).

3.1 DIGGS 1.0a

DIGGS 1.0a was finalized (see documentation [9], [10]) and released (see [5]) as an alpha

version in 2008 to the DIGGS vendor community for testing and comment during a three month

period starting in October 2008. An Invitational Meeting was later scheduled for DIGGS

stakeholders, including members from the Geotechnical Management System (GMS),

Geotechnical Data Coalition (GDC), Special Interest Group (SIG) Chairs, and selected industry

partners in March 2009, to report on the status of working with DIGGS 1.0a. The presentation

results of the Invitational Meeting were summarized in the Final Report (see [11]), which also

identified and began the documentation of a set of core issues with the DIGGS 1.0a schemas. A

few months later, the DIGGS Project Team announced a call for a formal independent review of

the DIGGS 1.0a schemas (see [12]).

3.1.1 Independent Review of DIGGS 1.0a Schemas

The DIGGS Project Team contracted with Galdos Systems Inc. and Compusult Ltd. to carry out

independent reviews of DIGGS version 1.0a. The objectives of this work were to:

DIGGS V2.0.a Documentation

 Page 28

1. Assess the current implementation of DIGGS with GML. (Were GML standards,

conventions, best practices, and patterns implemented correctly? Was the appropriate

version and/or variation of GML used based upon the requirements of DIGGS?)

2. Assess if the goals of the DIGGS standard is best implemented as a GML application

schema, or if other encoding standards (both GML and non-GML) should be considered.

3. Assess the strategy that was used in the organization and composition of schema objects

and files in the context of the physical observations and data that DIGGS is trying to

capture. (Is the schema too de-composed, or appropriate given the requirements of

DIGGS?)

4. Assess the core issues recently documented by the DIGGS Project Team on the

discussion forums and at the March 2009 DIGGS meeting in Orlando.

5. Consider other issues, as appropriate, that may not have identified by the DIGGS Project

Team, that exist with the schema design that may impact its application.

Final reports from Galdos (see [1]), Compusult (see [6]) and a synthesis of the findings (see [12])

were later published at diggsml.com with results and recommendations that DIGGS 1.0a was

not implementable without some further development.

3.2 DIGGS 1.1

The list of issues identified in the DIGGS 1.0a Schema Evaluation reports [1], [6], and [12] were

fixed as recommended and agreed with the DIGGS team leading to the release of DIGGSML

V1.1. One of the main concerns of V1.0a to be addressed in V1.1 was usability and performance of

the schemas, so the GML conformance fixes and GML profile creation were of the highest

priority for V1.1. A performance assessment was carried out upon completion of the V1.1

schemas as summarized in the following Sections.

3.2.1 Validaiton Performance Assessment

The changes to DIGGS made to V1.1 resulted in a 60x validation speed-up from V1.0a. The

Oxygen 10 Integrated Development Environment (IDE) was used to validate the complete set of

DIGGS schemas (using the built in Xerces J parser) with the most exhaustive validation settings

enabled including: ‘schema-full-checking’ and ‘honour all imports’.

The V1.1 schemas took 1.5 seconds to validate compared to 90 seconds for V1.0a with same

validator, settings, and software environment.

DIGGS V2.0.a Documentation

 Page 29

3.2.2 Complexity Assessment

The metric used to measure the complexity of the DIGGS schemas was to average the file sizes of

randomly generated instances from the DIGGS schemas. The randome file size is proportional

to the number of potential choices that can be made in populating DIGGS data and represents

the complexity of transforming the DIGGS model to other data models/formats e.g. a relational

database table structure or visualization formats such as KML.

The Diggs root element was generated with random values, using Oxygen 10, with maximum

recursivity level set to 3 (the highest level at that time that could be carried out on the DIGGS

schemas without memory overflow issues). Note that there was no user control in Oxygen 10 at

that time, to set the maximum tree depth (nesting level) as was done for v2.0a with Oxygen 14.

Several instance files were then generated automatically and the file sizes were averaged, with

the following results

 V1.0a

o Average file size = 10397.65 MB

 V1.0a with GML Profile

o Average file size = 355.74 MB (~30x decrease from V1.0a)

 V1.1

o Average file size = 14.2 KB (~750,000x decrease from V1.0a)

3.2.3 Overview of Changes in V1.1

The summary of the changes made to V1.1 are summarized as follows.

 Fixed GML Object-Property rule

 Fixed import/include statements – no longer need OASIS XML catalog

 Migrated DIGGS to GML 3.2

 Implemented a GML profile for DIGGS

 Reorganized DIGGS schemas to 5 namespace with one file per namespace (reduced

further to 3 namespaces in V2.0a)

 Implemented gml:identifier and gml:id

o gml:identifier – for globally unique id (use URN); only applies to gml features

(locations, projects, samples, layer systems, tests)

o gml:id – for all features and objects for referencing (database handle); objects are

complex types that are “recognized” as properties in gml.

DIGGS V2.0.a Documentation

 Page 30

 Removed unnecessary abstract types

 Implemented a Registry Information Model (RIM) for codelists in lieu of GML

dictionaries.

o Allows for single vocabulary with language translations.

 Tabular data

o retained existing structure, with the intention of implementing code lists (in v1.2)

to restrict column types

o removed generic table property

o tables included under specific test features only

 Geometry

o Projects – reference point, linear extent, areal extent

o Linear referencing – identified the gml 3.3 method to linearly reference positions

in a borehole (developed in V1.2 in parallel with gml 3.3 deveopment at OGC).

 Metadata

o AssociatedFile, Role, Remark, Specification, Equipment, BusinessAssociate, and Contract were

cast as GML metadata so that GML aware applications (e.g. Metadata Registry

service) will recognize those objects as metadata for discovery and archiving

purposes.

o No longer assigned metadata properties at the base level to prevent metadata

recursion.

o Added associatedFile, roles, and remarks metadata properties to all features.

o Added remarks metadata properties to all objects.

o Tests defined as features and added specifications and equipment metadata

properties as default.

It was a relatively straightforward set of tasks to apply the validation and conformance fixes to

DIGGS 1.0a using GML (3.1), and then to migrate DIGGS to GML 3.2. The following secti0ns

provide more in-depth technical details of the changes made in V1.1 under the categories: XML

Validation, GML Conformance, and Migration from GML 3.1 to GML 3.2.

3.2.4 Specific XML Changes in V1.1

3.2.4.1 XML Validation

Although the DIGGS 1.0a schemas validated with the Xerces J parser/validator, there was a

minor issue detected by the Altova XML Spy validator (versions 2005 r3 and 2009 sp1). Other

XML validators, including Xerces J, did not complain about this issue as it is commonly

encountered and instead the fix suggested below was automatically and gracefully applied by

these validators upon loading of the schema files.

DIGGS V2.0.a Documentation

 Page 31

Altova reported that the following 4 XML namespace declarations were missing in the

complete.xsd schema:

xmlns:diggs_geo=http://schemas.diggsml.com/1.0a/geotechnical
xmlns:diggs_env=http://schemas.diggsml.com/1.0a/environmental
xmlns:diggs_mon=http://schemas.diggsml.com/1.0a/monitoring
xmlns:diggs_pil=http://schemas.diggsml.com/1.0a/piling

The issue was easily fixed by completing the following namespace declarations on the schema

element as shown in bold below.

<schema
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:witsml="http://www.witsml.org/schemas/131"
 xmlns:gml="http://www.opengis.net/gml"
 xmlns:diggs="http://schemas.diggsml.com/1.0a"
 xmlns:diggs_geo="http://schemas.diggsml.com/1.0a/geotechnical"
 xmlns:diggs_env="http://schemas.diggsml.com/1.0a/environmental"
 xmlns:diggs_mon="http://schemas.diggsml.com/1.0a/monitoring"
 xmlns:diggs_pil="http://schemas.diggsml.com/1.0a/piling"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 targetNamespace="http://schemas.diggsml.com/1.0a"
 elementFormDefault="qualified">

...
</schema>

3.2.4.2 GML Conformance

Several design patterns were discovered in the DIGGS 1.0a schemas that did not conform to the

GML 3.1 Object-Property rules (see [1] for details and references to the violated GML clauses).

The fixes applied to v1.1 are organized according to the following sub-sections.

Property Types that Extended a GML Object Type

There were several Property types whose content model extends that of a GML Object type (e.g.

gml:AbstractFeatureCollectionType), which renders the corresponding property element

simultaneously as a GML Object, breaking the GML Object-property rule. The exhaustive list of

such property types in the DIGGS 1.0a schemas are listed in [1]. For example, a schema

fragment in AssociatedFile.xsd that illustrates an incorrect property type extension, which is non-

conformant with the GML Object-property rule, is illustrated in bold below:

 <complexType name="AssociatedFilePropertyType">
 <annotation>...</annotation>
 <complexContent>
 <extension base="gml:AbstractFeatureCollectionType">

http://schemas.diggsml.com/1.0a/geotechnical
http://schemas.diggsml.com/1.0a/environmental
http://schemas.diggsml.com/1.0a/monitoring
http://schemas.diggsml.com/1.0.a/piling

DIGGS V2.0.a Documentation

 Page 32

 <sequence>
 <element ref="diggs:_AssociatedFile" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="diggs:Ref" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

This problem pattern was fixed in V1.1 by removing the offending complexContent and extension

tags from the property type definition. For example, the following commented tags were

removed in the schema definition as shown in bold:

 <complexType name="AssociatedFilePropertyType">
 <annotation>...</annotation>
 <!--remove <complexContent>
 <extension base="gml:AbstractFeatureCollectionType">-->
 <sequence>
 <element ref="diggs:_AssociatedFile" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="diggs:Ref" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 <!--remove </extension>
 </complexContent>-->
 </complexType>

Property Elements Typed as a GML Object Type

There were several Property elements whose type is that of a GML Object type (e.g.

diggs_geo:HoleType), which renders the corresponding property element simultaneously as a GML

Object, breaking the GML Object-property rule. The exhaustive list of such property types in the

DIGGS 1.0a schemas are listed in [1]. For example, a schema fragment in AssociatedFile.xsd that

illustrates an incorrect property element declaration is illustrated in bold below:

 <complexType name="PileConstructionType" mixed="false">
 <annotation>...</annotation>
 <complexContent>
 <extension base="diggs:IdentifiedFeatureType">
 <sequence>
 ...
 <element name="hole" type="diggs_geo:HoleType" minOccurs="0" maxOccurs="1">
 <annotation>...</annotation>
 </element>
 ...
 </sequence>
 </extension>
 </complexContent>
 </complexType>

DIGGS V2.0.a Documentation

 Page 33

The problem pattern was fixed in V1.1 by changing the type reference in the property element

declaration from the object type to the corresponding property type, which contains the object

as a child. For example, the property declaration was changed as shown in bold below:

 <complexType name="PileConstructionType" mixed="false">
 <annotation>...</annotation>
 <complexContent>
 <extension base="diggs:IdentifiedFeatureType">
 <sequence>
 ...
 <element name="hole" type="diggs_geo:HolePropertyType" minOccurs="0" maxOccurs="1">
 <annotation>...</annotation>
 </element>
 <!--was <element name="hole" type="diggs_geo:HoleType" minOccurs="0" maxOccurs="1">
 <annotation>...</annotation>
 </element>-->
 ...
 </sequence>
 </extension>
 </complexContent>
 </complexType>

Property Types with Non-homogeneous Content

Every property type definition in the DIGGS 1.0a schemas (i.e. all types with name suffix

“PropertyType”) had a content model, which contained two or more elements that are non-

homogeneous, i.e. that do not derive from a common base type, which violated the GML

property type pattern. For example, a non-conforming schema fragment in DiggsObject.xsd, is

illustrated in bold below:

 <complexType name="RolePropertyType">
 <annotation>...</annotation>
 <complexContent>
 <extension base="gml:AbstractFeatureCollectionType">
 <sequence>
 <element ref="diggs:_Role" minOccurs="0" maxOccurs="unbounded"/>
 <element ref="diggs:Ref" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

This issue was addressed in V1.1 by removing the diggs:Ref element and moving the diggs:Ref

attributes: index and percentage, to a property element diggs:role in addition to the xlink

association attributes used for GML remote references. The new declaration of diggs:role

(renamed from diggs:roles) and the definition of RolePropertyType became:

DIGGS V2.0.a Documentation

 Page 34

 <complexType name="DiggsObjectType" mixed="false">
 <annotation>...</annotation>
 <complexContent>
 <extension base="diggs:DiggsBaseType">
 <sequence>
 ...
 <element name="role" type="diggs:RolePropertyType" minOccurs="0" maxOccurs="unbounded">
 <annotation>...</annotation>
 </element>
 ...
 </sequence>
 ...
 </complexType>

 <complexType name="RolePropertyType">
 <annotation>...</annotation>
 <!-- remove as recommended in 4.1.1.1.5 <complexContent>
 <extension base="gml:AbstractFeatureCollectionType">-->
 <sequence minOccurs="0">
 <element ref="diggs:_Role" minOccurs="0"/>
 <!--remove <element ref="diggs:Ref" minOccurs="0" maxOccurs="unbounded"/>-->
 </sequence>
 <!-- remove as recommended in 4.1.1.1.5 </extension>
 </complexContent>-->
 <attribute group ref="gml:AssociationAttributeGroup"/>
 <attribute name="index" type="integer"/>
 <attribute name="percentage" type="double"/>
 </complexType>

Elements that Substituted for “gml:_Object"

There were several elements listed in [1] whose types derived by extension from

gml:AbstractGMLType, which did not substitute for the corresponding substitution group gml:_GML.

For example, an element declaration and type definition that illustrates an inappropriate

substitutionGroup value, is illustrated in bold below:

 <element name="_Database" type="diggs:DatabaseType" substitutionGroup="gml:_Object"
 abstract="true">
 <annotation>...</annotation>
 </element>

 <complexType name="DatabaseType" mixed="false">
 <annotation>...</annotation>
 <complexContent>
 <extension base="gml:AbstractGMLType">
 <sequence>
 ...
 </sequence>

DIGGS V2.0.a Documentation

 Page 35

 </extension>
 </complexContent>
 </complexType>

This issue was fixed by modifying the substitution group value (example in bold below) on all

the element declarations exhaustively summarized in [1]:

 <element name="_Database" type="diggs:DatabaseType" substitutionGroup="gml:_GML"
 abstract="true">
 <annotation>...</annotation>
 </element>

Geometry Type Declaration

The diggs:GeometryType definition in Geometry.xsd did not conformant to the rules for user

defined geometry objects. The diggs:GeometryType definition is illustrated below:

 <complexType name="GeometryType" mixed="false">
 <annotation>...</annotation>
 <complexContent>
 <extension base="gml:AbstractGMLType">
 <sequence>
 <element name="points" type="gml:MultiPointType" minOccurs="0" maxOccurs="1">
 <annotation>...</annotation>
 </element>
 <element name="lines" type="gml:MultiLineStringType" minOccurs="0" maxOccurs="1">
 <annotation>...</annotation>
 </element>
 <element name="polygons" type="gml:MultiPolygonType" minOccurs="0" maxOccurs="1">
 <annotation>...</annotation>
 </element>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

This issue was addressed by redefining the point, line, and polygon geometry types conforming

to GML and declaring the appropriate property elements directly on the parent features that use

them (in place of the single generic geometry property). For example, the following Borehole has

multiple geometric representations, each one distinguished by the appropriate geometry

property names: referencePoint, centerLine, and totalMeasuredDepth, as illustrated by example below in

bold:

 <Borehole gml:id="LB_Webster">
 ...
 <referencePoint>
 <PointLocation srsName="urn:diggs:def:crs:DIGGS:0.1:26911_5703" srsDimension="3" gml:id="a33">

DIGGS V2.0.a Documentation

 Page 36

 <gml:pos>387316.665116977 3742645.12297961 7.81507</gml:pos>
 </PointLocation>
 </referencePoint>
 ...
 <centerLine>
 <LinearExtent srsName="urn:diggs:def:crs:DIGGS:0.1:26911_5703" srsDimension="3"
 gml:id="ls">
 <gml:posList>387316.665116977 3742645.12297961 7.81507 387316.665116977 3742645.12297961 -
420.124129847717</gml:posList>
 </LinearExtent>
 </centerLine>
 ...
 <totalMeasuredDepth>
 <PointLocation gml:id="lb_web_td" srsDimension="1" srsName="#sr123">
 <gml:pos>427.9392</gml:pos>
 </PointLocation>
 </totalMeasuredDepth>
 ...
 </Borehole>

Metadata

There were several property elements in DIGGS that carry feature metadata but are not strongly

typed using GML metadata. For example: AssociatedFile, BusinessAssociate, Contract, Equipment, and

Specification are such metadata elements but GML aware software such as a metadata harvester

cannot detect this through the standard GML typing mechanism. In V1.1, all features carry

associatedFile, roles, and remarks metadata properties and all objects carry remarks metadata

properties. In addition, all tests are features and carry specifications and equipment metadata

properties by default.

The metadata non-conformance issue was fixed in V1.1 by typing the metadata elements

appropriately in the DIGGS schema Kernel.xsd according to the GML rules. An example of the

corrected AssociatedFile declaration is shown below in bold:

 <element name="AssociatedFile" type="diggs:AssociatedFileType"
 substitutionGroup="diggs:AbstractMetadata" abstract="false"/>

 <complexType name="AssociatedFileType">
 <complexContent>
 <extension base="diggs:AbstractMetaDataType">
 <sequence>
 <element name="fileType" type="diggs:DiggsStringType" minOccurs="0" maxOccurs="1"/>
 <element name="creatingApplication" type="diggs:SoftwareApplicationPropertyType"
 minOccurs="0" maxOccurs="1"/>
 <element name="documentType" type="gml:CodeType" minOccurs="0" maxOccurs="1"/>
 <element name="fileDate" type="diggs:UnifiedDateTimeType" minOccurs="0" maxOccurs="1"/>
 </sequence>

DIGGS V2.0.a Documentation

 Page 37

 </extension>
 </complexContent>
 </complexType>

3.2.4.3 Migration from GML 3.1 to GML 3.2

Several straightforward changes were made to the DIGGS 1.1 schemas to migrate from GML 3.1

to GML 3.2. Such changes included: updating the namespace/version, minor changes to some

element and type names (e.g. replace ‘gml:_Feature’ with ‘gml:AbstractFeature’), restricting

cardinality of some attributes (e.g. gml:id becomes mandatory instead of optional), and

incorporating some new elements (e.g. gml:identifier, see Section 4.1 Naming and Identification).

An XSLT transformation was used to convert the DIGGS schema definitions to bring them into

compliance with GML 3.2.

3.3 DIGGS 1.2

The developments made in V1.2 were closely coordinated with the DIGGS team as the changes

were mainly domain dependent requiring DIGGS subject matter expertise. The changes range

from V1.2.1 to V1.2.4.k, much of which reflect modifications based on DIGGS stakeholder

comments.

3.3.1 Summary of Changes in V1.2

A bullet list summary of the changes made in V1.2 is as follows (for the fully detailed description

of the changes, see Appendix D - DIGGS Change Release Log):

 Implementation of formal codelists and creation of a supplementary XML representation

external to the schemas.

 Modifications to the test data structure to align more closely with the OGC Observations

and Measurement model.

 Implementation of 4 types of sampling features (formerly named location features):

borehole, trial pit, trench wall, and station that make use of some of the new GML 3.3

extensions including linear referencing

 Development of dictionaries and codelists.

 Implementation of Sampling and SamplingActivity as separate features to distinguish the

physical sample from the activity that produces it.

 Implementation of layer systems using codelists to define constituents

DIGGS V2.0.a Documentation

 Page 38

 Implementation of the GML coverage model for encoding CPT, geophysical, and similar

data types.

Some other structural changes include making the Project feature mandatory in all DIGGS

instances and restrict the occurrence so that only one Project is permitted in a DIGGS file. All

other features in the DIGGS file now must reference the single project.

3.4 DIGGS 2.0a

The changes made to V2.0a included schema optimization (to confirm usability and

performance), reorganization (e.g. removed Piling.xsd) and other minor modifications due to

namespace updates and alignment with OGC corrigenda changes (e.g. XLink updates, GML 3.3

finalization).

3.4.1 Summary of Changes in V2.0a

A bullet list summary of the changes made in V2.0a is as follows (for the fully detailed

description of the changes, see Appendix D - DIGGS Change Release Log):

 Updated XLink schema and corresponding schema dependencies in DIGGS schema files

from OGC xlinks.xsd to W3C xlink.xsd following the OGC XLink corrigendum taking

effect July 21, 2012

 Namespace and version changes to reflect V2.0a

o http://schemas.diggsml.com/2.0.a
o http://schemas.diggsml.com/2.0.a/geotechnical
o http://schemas.diggsml.com/2.0.a/environmental

 Restricted DIGGS dependencies on WITSML schemas

 Changed order of DIGGSType properties so that all metadata properties are together at the

end

 Changes to schema organization (e.g. drop GeoPhysical.xsd, Monitoring.xsd, Piling.xsd as

separate schema files and integrate schema definitions into Kernal.xsd and Geotechnical.xsd)

 Schema optimization – tests for recursivity (looping) proved positive in Kernel.xsd and

gml3.2Profile_diggs.xsd. All recursivity was removed from these schemas.

 Minor modifications to DIGGS URN Identifer structure and corresponding changes to

gml3.2Profile_diggs.xsd, Kernel.xsd, and testInstance.xml

 Updated DIGGS KML and Excel tools to support V2.0a

DIGGS V2.0.a Documentation

 Page 39

 Changed GML 3.3 Linear Referencing schemas as final adjustments were made to

accomodate GML 3.3.1 corrigendum

 Updated namespace value for gml3.3Profile_diggs.xsd to the recently adopted OGC official

namespace (http://www.opengis.net/gml/3.3/ce)

DIGGS V2.0.a Documentation

 Page 40

4 DIGGS 2.0a Structures and Organization

The DIGGS 2.0a data structures consist of schemas, code lists, dictionaries, and feature data and

metadata instances. This section summarizes how the data structures are identified and

organized in the online DIGGSML repository at www.diggsml.org.

4.1 Naming and Identification

All of the DIGGS data structures are named (e.g. by controlled string patterns) and identified (by

URIs) using formal internet mechanisms that enable referencing, linking and resolution over the

web. This section summarizes the naming conventions, identification schemes and the

corresponding authorities responsible for naming and identification of the DIGGS related

resources used by the DIGGS data structures. For example, DIGGS data instances are identified
using an OGC GML identification scheme (gml:id and gml:identifier), reference schemas by an HTTP
namespace URI (e.g. http://schemas.diggsml.com/2.0a) and schema location URL (e.g.
http://schemas.diggsml.com/2.0/) for validation purposes, have property element associations to other
data instances using W3C XLink, and have attribute values that reference codes (e.g. AGS codes)
and dictionary entries (e.g. EPSG CRS and SI Units) by URN that resolve to code lists and
dictionaries maintained by different authorities.

4.1.1 Authorities and Namespaces

A namespace is an identifier maintained by an authority whose structure (string, URI) is defined

by that authority to identify data structures of interest (e.g. schemas, data, codelists,

dictionaries) to that authority. The following subsections provide examples of different

namespaces and authorities.

4.1.1.1 Example 1

DIGGS is the authority for the core schema namespace (http://schemas.diggsml.com/2.0a), which is

an HTTP URI identifier for the set of grouped schema definitions (found in Kernel.xsd and

Complete.xsd). The DIGGS core schema namespace URI value is treated as a unique string defined

by the DIGGS authority and is used to distinguish the schema definitions from others, e.g. the

schema definitions in the GML namespace (http://www.opengis.net/gml/3.2) defined by the OGC

authority. Note that both of these sets of schema definitions contain some elements with the

same (local) name but with different definition, e.g. <AbstractFeature/>. These elements with the

same local name are distinguished by their fully qualified names: <diggs:AbstractFeature/> and

<gml:AbstractFeature>, where the ‘diggs:’ namespace prefix is bound to the DIGGS core schema

DIGGS V2.0.a Documentation

 Page 41

namespace (http://schemas.diggsml.com/2.0a) and the ‘gml:’ namespace prefix is bound to the GML

3.2 namespace (http://www.opengis.net/gml/3.2) by the following namespace declarations,

respectively:

<schema
 xmlns:diggs="http://schemas.diggsml.com/2.0.a"
 xmlns:gml="http://www.opengis.net/gml/3.2"
...
</schema>

4.1.1.2 Example 2

DIGGS is also the authority for its own URN namespace identifier, which is registered with the

Internet Assigned Numbers Authority (IANA, http://www.iana.org/). The DIGGS URN

identifiers are used to identify resources such as codelists, dictionaries, feature instances, etc.

The DIGGS URN structure is normatively defined in DIGGS_URN_Identifier_Scheme.xls,

informatively described in Section 4.1.2, and the URN registration RFC as submitted to IANA is

contained in Appendix A.

4.1.1.3 Example 3

The OGC is the authority for several schema namespaces, a URN namespace identifier structure,

and other dictionary namespace definitions (e.g. the (lon, lat) ordered geodetic CRS definition

made up of EPSG components). A select few samples of OGC schema namespaces are as follows:

http://www.opengis.net/gml
http://www.opengis.net/gml/3.2/
http://www.opengis.net/gml/3.3/lr
http://www.opengis.net/gml/3.3/lrov
http://www.opengis.net/kml/2.2
http://www.opengis.net/om/2.0
http://www.opengis.net/fes/2.0
http://www.opengis.net/wfs/2.0

The OGC is also the authority for a URN identification namespace, a scheme which the DIGGS

CRS dictionary makes use of to reference some CRS components and DIGGS feature data makes

use of to reference EPSG components. An exampleDIGGS CRS dictionary entry illustrates the

area and CRS resources that are referenced by OGC URNs.

 <dictionaryEntry>
 <CompoundCRS gml:id="diggs-crs-63226405_5713">
 <identifier codeSpace="urn:diggs:def:authority:DIGGS"
 >urn:diggs:def:crs:DIGGS:0.1:63226405_5713</identifier>
 <name>WGS 72 (deg) + Canadian Vertical Datum of 1928</name>

http://www.iana.org/

DIGGS V2.0.a Documentation

 Page 42

 <domainOfValidity xlink:href="urn:ogc:def:area:EPSG::1289"/>
 <scope>Geodetic and engineering surveying.</scope>
 <componentReferenceSystem xlink:href="urn:ogc:def:crs:EPSG::63226405"/>
 <componentReferenceSystem xlink:href="urn:ogc:def:crs:EPSG::5713"/>
 </CompoundCRS>
 </dictionaryEntry>

4.1.2 DIGGS URN Identifier Structure

The DIGGS URN structure is registered with IANA and is normatively defined in the

accompanying DIGGS_URN_Identifier_Structure.xlsx document, which is expected to change over time

as modifications and new additions are made. A summary snapshot is provided here for

convenience.

The IANA requires that all URN structures have the following basic form:

urn:{Namespace ID}:{Namespace Specific String}

The Namespace ID (NID) for the URN is assigned by IANA and was requested to be “diggs” in

the RFC registration submission by DIGGS (see Appendix A). The Namespace Specific String

(NSS) of all URNs that use the “diggs” NID will have the following structure:

urn:diggs:{ResourceType}:{ResourceSpecificString}

The {ResourceType} part of the URN has the form def:RESOURCE_CLASSIFICATION, where ‘def’

indicates that the resource is a definition and RESOURCE_CLASSIFICATION is constrained to an

enumerated list of strings specified in the DIGGS_URN_Identifier_Structure.xlsx document. The

{ResourceSpecificString} part of the URN includes authority, version, code, and sub-code fields

resulting in the following form of the DIGGS URN:

urn:diggs:def:RESOURCE_CLASSIFICATION:AUTHORITY[:VERSION_NUMBER][:CODE][:SUB_CODE]

Note that the VERSION_NUMBER, CODE, and SUB_CODE fields are optional as indicated by the

square brackets. The allowed values of RESOURCE_CLASSIFICATION, AUTHORITY,

VERSION_NUMBER, CODE, and SUB_CODE are specified in the DIGGS_URN_Identifier_Structure.xlsx

document, which at the time of writing are summarized in Table 4-1.

DIGGS V2.0.a Documentation

 Page 43

DIGGS URN Structure

urn:diggs:def:RESOURCE_CLASSIFICATION:AUTHORITY[:VERSION_NUMBER][:CODE][:SUB_CODE]

Field Name Description Mandatory
/Optional
Indicator

Field
Values

Comments

urn Required
prefix for all
URNs

Mandatory This field is
fixed

diggs Namespace
Identifier

Mandatory diggs Assigned by IANA and requested to be ‘diggs’

def Indicates that
the resource
is a definition

Mandatory def There are no other branches of this field to
date, but new branches could be added (e.g.
doc or spec)

RESOURCE_
CLASSIFICATION

The type or
classification
of the
resource.

Mandatory codelist
crs
dictionary
feature
uom

'feature' is used to identify a feature instance

Other RESOURCE_CLASSIFICATION values
may be added as required. For example, if
CRS components such as datums are added to
the DIGGS CRS Dictionary, this scheme will be
updated accordingly.

AUTHORITY The
maintaining
authority of
the resource

Mandatory AGS
Caltrans
DIGGS
EPSG
OGC
POSC
SI
USGS

Other AUTHORITY values may be added as
required.

Note: the concept of AUTHORITY is extended
to cover dictionaries. For example, the EPSG
(CRS dictionary) is considered an acceptable
AUTHORITY for the CRS resource type (even
though the Oil and Gas Producers (OGP) is the
organization that approves and authorizes the
EPSG CRS dictionary releases

VERSION_
NUMBER

Indicates the
release or
version
number

Optional String
characters
representing the
version (e.g.
2.0a)

If VERSION_NUMBER is omitted but CODE is
present, :: should be used between
AUTHORITY and CODE. The
VERSION_NUMBER shall be omitted when
used as an identifier of resource types:
dictionary, cnode (including featureType,
attributeType, listedValue) or slot, in the
versionless FDDs such as the NFCD.

CODE The code or
local identifier
of the
resource (e.g.
gml:id value)

Optional String
characters
representing the
code (e.g.
CRS20a)

For some codespace values the AUTHORITY
alone is sufficient, in which cas CODE can be
omitted and VERSION_NUMBER may be
omitted

SUB_CODE The sub-code
or local
identifier of
the resource
(e.g. gml:id
value)

Optional String
characters
representing the
subcode (e.g.
246tcp)

The sub-code is populated e.g. when the code
corresponds to a dictionary or codelist that has
sub-entries

Table 4-1: Tabular Summary of DIGGS URN Identification Structure

DIGGS V2.0.a Documentation

 Page 44

The DIGGS Naming Authority (DIGGSNA) will manage and document resources using the

"diggs" NID and will be the authority for managing the assignment of the {ResourceType} and

{ResourceSpecificString} fields for each resource class. The DIGGSNA will ensure the uniqueness of

the strings themselves or will delegate secondary responsibility for the management of well-

defined subfields.

The DIGGSNA may also permit the use of unregistered experimental type values of the following

form (i.e. preceded by urn:x-diggs).

urn:x-diggs:{ResourceType}:{ResourceSpecificString}

Such experimentation is intended for testing purposes only and would be the only case where

multiple users may end up using the same value for separate uses.

The following examples are representative of URNs that could be assigned

urn:diggs:def:dictionary:DIGGS:CompoundCRS20a
urn:diggs:def:dictionary:DIGGS:Units20a
urn:diggs:def:codelist:DIGGS:mv_calculation_method
urn:diggs:def:codelist:DIGGS:modulus_calculation_method
urn:diggs:def:codelist:AGS:compaction_mould_type
urn:diggs:def:codelist:AGS:chemical_determinand
urn:diggs:def:crs:DIGGS:63226405_5713
urn:diggs:def:uom:SI:m
urn:diggs:def:uom:DIGGS:kdyne
urn:diggs:def:uom:DIGGS:ozf
urn:diggs:def:uom:DIGGS:tonfUS
urn:diggs:def:codelist:DIGGS:mv_calculation_method:secant_method
urn:diggs:def:codelist:DIGGS:modulus_calculation_method:tangent_method
urn:diggs:def:codelist:AGS:compaction_mould_type:cbr
urn:diggs:def:codelist:AGS:chemical_determinand:246tcp
urn:diggs:def:feature:DIGGS:Proj0001
urn:diggs:def:feature:USGS:LB_Webster

4.1.3 DIGGS Feature Identifiers and References

All features and objects in DIGGS carry a mandatory id attribute (gml:id), which is a standard

XML ID type and used as a database handle for referencing and linking to and from other

features and objects. The gml:id must be unique within a DIGGS data instance document and has
some lexical restrictions (such as no colons ‘:’ and other special characters). DIGGS features and
objects also carry a optional identifier (gml:identifier), which is a patterned globally unique URI,
encoded by the DIGGS URN, with additional pattern restrictions as used by the V1.0a
diggs:IdentifierType, which now takes the form: urn:diggs:def:feature:[A-Z]{1,8}:[A-z0-9_\.\-]{1,200})
following DIGGS identifier structure described in Table 4-1. The exampleBorehole instance in

Figure 4-2, shows examples of gml:id values on features and objects (highlighted in blue) and an
example of the Borehole’s gml:identifier value (highlighted in green).

DIGGS V2.0.a Documentation

 Page 45

Figure 4-2: ExampleTruncated Borehole Instance

All DIGGS features carry property references/associations that can refer to either the gml:id

attribute or the globally unique gml:identifier of the target feature. This reason for organizing

features in this manner is that two-way references can be maintained between features, while

allowing individual feature instances to be transmitted in XML documents without having to

also transmit information about the objects they are associated with, except for their id's and

identifiers. The reason that the referencing properties carry both the gml:id and gml:identifier is that

an xlink:href may not actually resolve to a real object in an XML file somewhere (it could reside in

a database instead), but the global identifier (the key) is still maintained in the referencing

feature, so that references can be resolved later, in a database or processing software. This

allows flexibility in business practice and reduces redundancy and requirements to update

records in databases when there is no need to do so. When a hole is drilled, the driller can

transmit the hole information in one instance file, next the geologist can independently

transmit the layer descriptions with a reference to the hole, and finally, the logging company can

deliver the geophysical log with a hole reference – all in separate instance documents but the

information can be compiled together (and transmitted later together in a single instance

document as part of a final report) because they will all carry references to the hole feature that

they associate with. This can be done with or without a requirement to send along project

information.

Borehole (gml:id=”LB_Webster”)

gml:identifier = urn:diggs:def:feature:USGS:LB_Webster

urn:diggs:def:feature:USGS:LB_Webster

holeDiameters

hasA name = Long Beach - Webster

centerLine

LinearExtent (gml:id=”LE0001”)

BoreholeDiameter (gml:id=”BHD0001”)

posList = 387316.665116977 3742645.12297961

7.81507

diameter (uom=”in”) = 6

DIGGS V2.0.a Documentation

 Page 46

4.2 DIGGS Repository Organization

The DIGGS2.0a online repository includes the DIGGSML Schemas and the supporting

Codelists, Dictionaries, Documentation and ExampleInstance directories as shown in Figure

4-3.

Figure 4-3: DIGGS 2.0a Root Level Directory Structure

4.2.1 Official Schemas

The online DIGGSML Schema repository contains 9 XML Schema Definition (XSD) files as

shown in Figure 4-4.

Figure 4-4: DIGGS 2.0a Schema File Directory

DIGGS V2.0.a Documentation

 Page 47

The DIGGSML top-level “wrapper” schema file is aptly named Complete.xsd as it aggregates all of

the other dependent schemas. The creation of the Complete.xsd wrapper schema file makes in

convenient for developers to validate/import all of the DIGGS schemas in a single

execution/declaration. The main DIGGSML GML Application Schema definitions are contained

in: Kernel.xsd, Environmental.xsd, and Geotechnical.xsd. The GML profiles (subsets of the core GML

Schemas) that are used by DIGGSML are:

 gml3.2Profile_diggs.xsd – a subset of elements and types appropriately restricted from

GML 3.2 for use by DIGGS

 gml3.3Profile_diggs.xsd – a single element (SimpleMultiPoint) and type

(SimpleMultiPointType) from the GML 3.3 core schema used by DIGGS

 glrProfile_diggs.xsd – a subset of elements and types from GML 3.3 Linear Referencing

used by DIGGS

 glrovProfile_diggs.xsd – a subset of elements and types from GML 3.3 Linear Referencing

with Offset Vectors used by DIGGS

Both the DIGGS application schemas and the core GML schemas make use of the following W3C

schemas:

 xlink.xsd – provides the simpleLink attribute group primarily used to locate a remote

resource (using the xlink:href attribute) and defines supplementary behaviour, semantics

and traversal attributes

 xml.xsd – (this file is imported by xlink.xsd) defines standard attributes such as xml:lang (to

specify an international language code) and xml:base (for relative referencing flexibility)

4.2.1.1 Schema Namespaces

The DIGGS2.0a schemas are divided into different namespaces, where each namespace is

essentially an identifier for the set of grouped schema definitions, whose purpose is to:

1. Prevent name collisions (e.g. distinguish an element with the same name in two different

schemas)

2. Capture the schema version (at least in the case of the DIGGS identification scheme)

3. Distinguish schemas (e.g. core vs extensions) which have different constructs and

conceptual models

The DIGGS2.0a schema namespaces are as follows:

http://schemas.diggsml.com/2.0.a
http://schemas.diggsml.com/2.0.a/geotechnical
http://schemas.diggsml.com/2.0.a/environmental

DIGGS V2.0.a Documentation

 Page 48

The first namespace (http://schemas.diggsml.com/2.0a) is the core namespace, which contains the

common constructs (in Kernel.xsd) shared by the other DIGGS schemas. The core namespace also

contains a wrapper schema (Complete.xsd) which declares the necessary references to aggregate

all of the other schemas in a single package. The second and third namespaces listed above

contain extensions to the core constructs specific to the Geotechnical and GeoEnvironmental

domains, respectively. The main reason for the division of the schemas into these separate

namespaces is so that the schema definitions in each of these namespaces can be revised

independently by different subject matter experts. The schema file dependencies organized by

namespace are illustrated in Figure 4-5, where a solid arrow represents inclusion of the target

schema file (which is in the same namespace) into the schema at the base of the arrow and a

dashed arrow represents an import of the target schema from another namespace. There are a

total of 9 namespaces used in DIGGS2.0a, 3 of which are defined by DIGGS as described above,

4 defined by OGC (the GML schemas), and another 2 defined by W3C (XML and XLink).

DIGGS V2.0.a Documentation

 Page 49

Figure 4-5: DIGGS 2.0a Schema Hierarchy Organized by Namespace

4.2.2 Data

Instances can be created and stored anywhere, online or offline, but were designed for sharing

over the web. Data repositories are maintained by DIGGS users and can be read by applications

on mobile devices, desktop workstations, or computer servers from various datastores:

 File directories – accessible online as public or private web pages or offline in local file

directories (e.g. for field work without internet access).

Geotechnical.xsd

DIGGS GeoTechnical:

http://schemas.diggsml.com/2.0.a/geotechnical

import

gml3.2Profile_diggs.xsd

import

import

import

OGC Namespaces

Environmental.xsd

xlinks.xsd

xml.xsd

W3C Namespaces

DIGGS Environmental:
http://schemas.diggsml.com/2.0.a/environmental

glrovProfile_diggs.xsd

glrProfile_diggs.xsd

gml3.3Profile_diggs.xsd

GML 3.3:

http://www.opengis.net/gml/3.3

http://www.opengis.net/gml/3.3/lr

http://www.opengis.net/gml/3.3/lrov

XML Namespace:

http://www.w3.org/XML/1998/namespace

XLink Namespace:

http://www.w3.org/1999/xlink

GML 3.2
http://www.opengis.net/gml/3.2

import

DIGGS Namespaces

DIGGS Core Namespace:

http://schemas.diggsml.com/2.0.a

include
Kernel.xsd Complete.xsd Geotechnical.xsd

DIGGS GeoTechnical:

http://schemas.diggsml.com/2.0.a/geotechnical

import

gml3.2Profile_diggs.xsd

import

import

import

OGC Namespaces

Environmental.xsd

xlink.xsd

xml.xsd

W3C Namespaces

DIGGS Environmental:
http://schemas.diggsml.com/2.0.a/environmental

glrovProfile_diggs.xsd

glrProfile_diggs.xsd

gml3.3Profile_diggs.xsd

GML 3.3:

http://www.opengis.net/gml/3.3

http://www.opengis.net/gml/3.3/lr

http://www.opengis.net/gml/3.3/lrov

XML Namespace:

http://www.w3.org/XML/1998/namespace

XLink Namespace:

http://www.w3.org/1999/xlink

GML 3.2
http://www.opengis.net/gml/3.2

import

DIGGS Namespaces

DIGGS Core Namespace:

http://schemas.diggsml.com/2.0.a

include
Kernel.xsd Complete.xsd

import

DIGGS V2.0.a Documentation

 Page 50

 Spatial Databases – accessible online through public or secure web interfaces or offline

using a standalone client interface

Data instances can be validated against the official DIGGS schemas online or can be validated by

a locally saved/cached copy of the DIGGS schemas.

4.2.3 Dictionaries

GML provides an XML encoding to define both CRS and Units dictionaries specifically designed

to conform to the international standard models for CRS (ISO TC211 19111 Spatial Refencing by

Coordinates) and Units (SI), respecticely. Such GML CRS and Units dictionaries can be defined

and extended for custom use in specific application domains and was done for DIGGS.

4.2.3.1 DIGGS Compound Coordinate Reference Systems (CRS)

DIGGSML data is generally 3D, consisting of a pair of ‘horizontal’ coordinates followed by a

third ‘vertical’ coordinate. Since many of the Earth’s commonly used horizontal and vertical CRS

components are available in the Oil and Gas Producers (OGP) CRS dictionary (formerly known

as the EPSG CRS database), it was natural to define the DIGGS CRS dictionary as a derived

extension of OGP’s. The OGP CRS dictionary is managed online in a deployed web registry

service and each of its CRS dictionary entries are stored as GML and can be retrieved as GML or

WKT by online request. Each 3D CRS in DIGGS is defined as composition of the horizontal and

vertical CRS conponents in the OGP CRS dictionary and the collection such compound CRSs is

encoded as GML in the DIGGS CRS Dictionary. The DIGGS CRSs have been documented in all

of the following ways:

 GML CRS Dictionary

 WKT CRS Dictionary

 CRS Component summary spreadsheets

 Registry Information Model (ebRIM XML encoding, standardized by OASIS and adopted

by the OGC standard CSW-ebRIM, the geospatial Catalogue Service for the Web)

The GML and WKT CRS dictionaries were generated automatically from the CRS Component

spreadsheets: North American CRS.xls, UK CRS.xls, and World CRS.xls.

DIGGS GML CRS Dictionary

The normative DIGGS CRS Dictionary is defined in the standard GML encoding designed for

referencing and resolving over the web. The DIGGS CRS Dictionary contains a list of Compound

DIGGS V2.0.a Documentation

 Page 51

3D CRS definitions generated from components based on the EPSG (European Petroleum

Survey Group) Database V7.5.8.

Figure 4-6: Excerpt of DIGGS CRS Dictionary of Compound 3D CRSs

The gml:id and gml:identifier values for each of the DIGGS Compound CRSs were created by

concatenating the EPSG codes (of the form [EPSG code]_[EPSG code]) from the component

horizontal and vertical CRSs.

DIGGS V2.0.a Documentation

 Page 52

Figure 4-7: ExampleDIGGS Compound CRS Definition

Since the Compund CRSs were selected for use by DIGGS data, the URN identifiers are in the

DIGGS namespace.

DIGGS WKT Dictionary

A text based version of the DIGGS CRS dictionary is also maintained as a list of Well-Known

Text (WKT) definitions. This WKT dictionary is used existing extend spatial engines and

transformation tools such as Oracle Spatial, Bentley Microstation and GeoTools. An

exampleWKT encoding of the first compound CRS in the DIGGS dictionary is as follows.

63226405_5713=COMPD_CS["WGS 72 (deg) + Canadian Vertical Datum of 1928",
 GEOGCS["WGS 72 (deg)", DATUM["World Geodetic System 1972",
 SPHEROID["WGS 72", 6378135.0, 298.26, AUTHORITY["EPSG","7043"]],
 TOWGS84[0.0, 0.0, 4.5, 0.0, 0.0, 0.554, 0.045171992568114105], AUTHORITY["EPSG","6322"]],
 PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]],
 UNIT["degree", 0.017453292519943295],
 AXIS["Geodetic longitude", EAST],
 AXIS["Geodetic latitude", NORTH], AUTHORITY["EPSG","63226405"]],
 VERT_CS["CGVD28 height",
 VERT_DATUM["Canadian Geodetic Vertical Datum of 1928", 2005, AUTHORITY["EPSG","5114"]],
 UNIT["m", 1.0], AXIS["Gravity-related height", UP], AUTHORITY["EPSG","5713"]],
 AUTHORITY["DIGGS","63226405_5713"]]

DIGGS V2.0.a Documentation

 Page 53

The DIGGS KML Visualization Tool (see Section 7.4) makes use of the free, open source

GeoTools geospatial toolkit and was extended by the DIGGS WKT Compound CRS definitions to

support the transformation of any of the DIGGS Compound CRSs to the KML CRS.

CRS Component Summary Spreadsheet

The CRS component spreadsheets are human readable lists of horizontal and vertical CRS

components extracted from the EPSG database, which are used by DIGGS data in North

America (US and Canada), the UK, and the World. These spreadsheets are used as inputs to an

XSLT script that automatically generates the GML and WKT CRS dictionaries for DIGGS and

are located at the following paths in the DIGGS2.0a directory.

\Dictionaries\CRS\input\North American CRS.xls
\Dictionaries\CRS\input\UK CRS.xls
\Dictionaries\CRS\input\World CRS.xls

The first worksheet in each of the spreadsheets listed above itemizes the horizontal (2D), vertical

(1d) and Compound (3D) CRS's that are used by DIGGS in the OGP/EPSG database as shown in

Figure 4-8, Figure 4-9 and Figure 4-10.

Figure 4-8: Excerpt of Horizontal CRS Components used by DIGGS in North America

They are ordered by area name for convenient browsing (as opposed by sorting by the EPSG

code). The second worksheet lists the 4 vertical coordinate systems to combine with each of the

horizontal ones.

Figure 4-9: Excerpt of Vertical CRS Components used by DIGGS in North America

The third worksheet lists all of the compound CRS's that were defined in the EPSG database.

Figure 4-10: Excerpt of Compound CRS Components used by DIGGS in North America

DIGGS V2.0.a Documentation

 Page 54

Each resultant compound CRS is a combination of a horizontal CRS with each of the vertical

CRSs (with intersecting domains of validity) yielding a total of 2781 DIGGS Compound CRSs. An

example instance of such a compound CRS (26911_5703) has horizontal component

EPSG:26911 (Easting, Northing) in meters (UTM zone 11N) and vertical component EPSG:5703

(Height) in meters (NAVD 88). When queried from the DIGGS Demo CRS Registry Service the

ebRIM response can be viewed as a web page as shown in Figure 4-11.

Figure 4-11: DIGGS 3D CRS Components Viewed by DIGGS Demo CRS Registry Service

The machine readable GML and WKT encodings for the selected CRS definition can be retrieved

over the web by URL (e.g. the ‘GML’ and ‘WKT’ buttons on the lower right of Figure 4-11) or

programatically via a simple HTTP GET or POST query.

4.2.3.2 Units

The units of measure used in DIGGS can include any of the standard SI units (see

http://www.bipm.org/en/si/), additional derived units listed in the online Unified Code for Units of

Measure (UCUM) dictionary (see http://unitsofmeasure.org/), or the more geotechnical domain

specific unit definitions imported by DIGGSML in WITSML V.1.3.1.1. Such domain specific unit

definitions are located in the following WITSML schema files and can be made retrievable over

the web as was done for the DIGGS CRS components (see Section 4.2.3.1).

typ_baseType.xsd
typ_catalog.xsd

DIGGS V2.0.a Documentation

 Page 55

typ_dataTypes.xsd
typ_measureType.xsd
typ_quantityClass.xsd

The WITSML units are used to quantify measures such as the following:

 accelerationLinear
 anglePerLength
 anglePerTime
 area
 areaPerArea
 density
 dimensionless
 dynamicViscosity
 electricCurrent
 electricPotential
 energyPerArea
 equivalentPerMass
 force
 forcePerLength
 forcePerVolume
 frequency
 illuminance
 length
 lengthPerLength
 magneticFieldStrength
 magneticInduction
 massConcentration
 mass
 massPerLength
 momentOfForce
 perLength
 planeAngle
 power
 pressure
 relativePower
 specificVolume
 thermodynamicTemperature
 time
 velocity
 volume
 volumeFlowRate
 volumePerVolume

For example, the force measure can be specified by units with the following abbreviations:

N, daN, dyne, gf, kdyne, kgf, klbf, kN, lbf, Mgf, mN, MN, ozf, pdl, tonfUK, tonfUS, uN

DIGGS V2.0.a Documentation

 Page 56

4.2.4 CodeLists

Code lists are controlled vocabularies used by DIGGS property values. Such controlled

vocabularies are used to avoid errors and ambiguities often found in data that make use free text

values. An example of such a code list would be all the types of chemical determinands that can

be observed from sample test readings.

The code lists were generated as an XML encoding automatically from a summary spreadsheet

maintained in Excel (DIGGSCodeTypes.xlsx) including the code lists originally derived from the

DIGGS V1.0a dictionaries.

Figure 4-12: Example Code Lists Viewed as Spreadsheet

The spreadsheet (DIGGSCodeTypes.xlsx) shown in Figure 4-12 contains all codes from the

DIGGS1.0a code lists plus additional enumerations and codes added in v2.0a, which are

categorized into three types A, B, and C as summarized in the following table.

Type Description Proposed DIGGS Implementation

A Codes to describe in more detail

a specific data element, where

the data element cannot be

controlled or validated by the

schema alone (e.g. table data

and CPT parameter names).

If the code is absolutely necessary for DIGGS to function and be

unambiguous for source and target data interchange, then these codes

should be implemented into enumerated lists. Enumerated lists are part

of the schema and are validated by schema alone.

B Codes created, maintained, and

published by recognized

standards organizations, used in

practice, and commonly

referenced with or without

software (e.g. USCS Group

Symbols for soil classification,

Munsell color codes, EPSG

spatial reference codes).

For codes that are commonly referenced, nomenclature and

abbreviations well documented, and maintained by a standards body,

these should be implemented in DIGGS using codetype and codespace

attributes. DIGGS might require that some codetype and codespace

attributes be mandatory. Although the codespace would reference the

standards organization (e.g. USCS, AASHTO), the full list of codes (e.g.

SP, SW) would not be in the codelist, since the standards organization

maintains this list, and it would be left to the users to comply with the

standards published by that standards organization.

DIGGS V2.0.a Documentation

 Page 57

C Codes created by an

organization, government

agency, trade group, or

company to standardize

nomenclature and terms across

a specific user base (e.g. roles,

titles, equipment names, test

names).

Codes that are used in localized practice should be made available for

integration into DIGGS as needed. Codespace and codetype attributes

would be optional. This would be applicable, for example, for codes

such as “roles” where the value itself likely carries meaning without other

external references. However, specific user groups may want to

standardize the possible values being used. Three possibilities:

 DIGGS file authors could simply use codes (uncontrolled) without

any reference to a codetype or codespace. However, the recipient

of the DIGGS file would not know what standards are being

referenced.

 The DIGGS author could populate the codetype and codespace

attributes. Since these are optional and the format uncontrolled, the

recipient may still be unable to resolve the references in a

systematic manner.

 The DIGGS author could reference a published codespace that can

be validated with schematron.

In DIGGS2.0a a new XML encoding was used. The DIGGS1.0a code lists (e.g. agsCodeList_V1.xml)

were converted from a GML Dictionary encoding to the XML encoding called ebRIM, which has

international language support standardized by the international OASIS standards body and

adopted by the OGC as a Registry Information Model (RIM). The ebRIM encoding is a machine

readable XML encoding that was designed for publishing and sharing common information

resources such as code lists and dictionaries over the web. The advantages of using ebRIM are:

that it is an XML encoding; includes support for international languages, discovery and life cycle

management of the information; and can easily be viewed in human readable formats, such as

spreadsheets, or on a web page as shown in Figure 4-13.

DIGGS V2.0.a Documentation

 Page 58

Figure 4-13: 246TCP Code in Chemical Determinand Code List. Encoded as ebRIM and Viewed as
HTML in a Web Browser

All of the DIGGS codelists are encoded in ebRIM XML, have human readable visualizations (e.g.

Excel spreadsheet in Figure 4-12 and web page HTML in Figure 4-13) and can be made

retrievable programatically over the web as was done for the DIGGS CRS components (see

Section 4.2.3.1).

DIGGS V2.0.a Documentation

 Page 59

5 DIGGS 2.0a Feature Model

DIGGS2.0a defines 8 base classes of features (as shown in Figure 5-1 below) that can be

contained as a child under the root DIGGS element. This classification is formalized in the

schemas so that all existing features in DIGGS are categorized by derivation from these base

classes. The existing features in DIGGS2.0a are the commonly used and requested features by

the geotechnical and geoenvironmental communities, e.g. Project, Borehole, Sample, SamplingActivity

etc, and are discussed in detail in Section 5.2-DIGGS Feature Classes and Objects.

Figure 5-1: The Diggs Element and its Properties DIGGS 2.0a

The 8 base feature classes are classified by Processes, Entities, and Groups as follows:

1) InvestigationTarget –target features of interest being sampled/measured [Entity]

2) Project - business activities that collect, compile, and process information from locations

[Process]

DIGGS V2.0.a Documentation

 Page 60

3) SamplingFeature - real world places and constructions (e.g. Boreholes) from which

observations are made, samples are collected, or tests are run. [Entity]

4) Measurement – test readings (in-situ or not) taken from samples collected from sampling

features, or created via a sampling activity [Process]

5) SamplingActivity - the process of sample creation or collection [Process]

6) Sample - earth material, fluids, or gases collected or created for observation and testing

[Entity]

7) LayerSystem - ordered interval observations or interpretations of earth materials,

properties or features at a location [Entity]

8) Group - collections of projects, locations, samples or groups of these, for the purpose of

providing meaningful context to observations and measurements.

5.1 Feature Properties and Attributes

Optional properties of all objects include status, description, and remarks metadata; and all features

include additional optional properties including associated file and role metadata objects.

Projects, Sampling Features, Samples, Layer Systems, Sensors, and Groups are "named" features

– in addition to the identifiers and other properties, they also carry a mandatory name property.

Some DIGGS objects are also named (i.e. carry a mandatory name property) including some of

the Layers and all of the Metadata objects.

5.1.1 Named Features and Inherited Properties

The Named Features class, represented by the diggs:AbstractNamedFeature element, is an abstract

class of features with common properties and attributes that all named features inherit

including: gml:id, gml:description, gml:name, gml:identifier, status and a group of metadata properties:

associatedFiles, roles, and remarks, as shown in Figure 5-2.

DIGGS V2.0.a Documentation

 Page 61

Figure 5-2: The Named Feature Class and its Properties

The gml:id attribute and gml:description property are inherited from a higher abstract feature class
called diggs:AbstractFeatureBase as shown in Figure 5-3.

DIGGS V2.0.a Documentation

 Page 62

Figure 5-3: The Abstract Feature Base Class and its Properties

5.2 DIGGS Feature Classes and Objects

The special root level Diggs feature element is at the top of the feature instance hierarchy and its

properties organize DIGGS data into logical the components: projects, samplingFeatures,

measurements, samplingActivities, samples, and layerSystems. All other features such as Property, Borehole,

etc. are at the same level in the hierarchy (siblings) and instantiated as the descendent property

children of the Diggs feature element. New to DIGGS 2.0a, features are no longer nested inline

inside of a parent Project element as in some previous versions of DIGGS.

Figure 5-4: Organization of DIGGS Feature Data into Logical Components: projects,

samplingFeatures, measurements, samplingActivities, samples, and layerSystems

Instead, a typical feature in DIGGS is now associated in V2.0a to one or more Project features and

possibly to other features by reference. For example, consider a single Project that has one Borehole

as in the following XML example instance. Note that the Project feature references the associated

Borehole sampling feature and vice-versa as illustrated in Figure 5-5.

DIGGS V2.0.a Documentation

 Page 63

Figure 5-5: Example Feature Associations in DIGGS 2.0a

Some illustrative remarks about the example instance of Figure 5-5:

 The Project and the Borehole are at the same level in the feature hierarchy.

 The Project (gml:id=“ProjA”) has a property element called originalSamplingFeatureRef, which

points to the Borehole feature instance with gml:id=“BH001” (in the short XLink/XPointer

notation). Such a "simple" link is similar to the common link on an HTML page that

points to another Web page or to a resource to download

 The Borehole sampling feature “BH001”has a property element reference called projectRef to

Project “ProjA”.

5.2.1 Projects

The Project feature is a concrete (instantiable) feature with no subclasses. The Project feature must

be included in every Diggs document and all other features (samples, holes, etc.) must belong to a

single project in a Diggs document. Therefore, a single Project feature is mandatory in all DIGGS

instances and all other features in the DIGGS file have a projectRef property and must reference

the single Project, as illustrated as a feature association in the previous Figure 5-5.

id reference (XLink) identifier

reference

DIGGS V2.0.a Documentation

 Page 64

Figure 5-6: The Project Feature and its Properties

DIGGS V2.0.a Documentation

 Page 65

The Project feature has the properties: originalSamplingFeatureRef, relatedSamplingFeatureRef,

samplingActivityRef, groupRef, referencePoint, linearExtent, areaExtent, projectDateTimeSpan, location, purpose,

and contracts, as shown in Figure 5-6.

The first 4 properties with the ‘Ref’ suffix are used to reference, as indicated by the property

name, the corresponding features (either by gml:identifier or gml:id): SamplingFeature, SamplingActivity,

and Group. Each of the referenced features are described in following sections of the document.

The referencePoint property contains a PointLocation geometry with coordinates that could

approximate the location of the Project on the earth/globe. The PointLocation for a project is

typically defined by 3D coordinates in an earth-based Coordinate Reference System (CRS) (e.g. a

map projection with height/depth, a Geodetic CRS (geodetic latitude, longitude, elevation), or a

local Engineering CRS). Alternatively, but less typically for projects, the PointLocation can be

referenced as a distance along another well-known piece-wise linear curve (see the linear

referencing discussion in Section 5.2.2.1 and Figure 5-10), such as the linear extent geometry of

the project.

The linearExtent property contains a linear curve geometry encoded by the diggs:LinearExtent that

represents the shape and location of the linear extent of the project site. The LinearExtent

geometry records control point positions (joined together by linear interpolation), which are

each encoded a 3D earth based CRS.

The areaExtent property contains a surface polygon geometry typically represented by a gml:Polygon

that represents the shape and location of the area extent of the project site. The Polygon geometry

records control point positions (each typically encoded a 3D earth based CRS) forming a closed

linear ring representing the exterior boundary of the area extent (joined together by linear

interpolation). Note that the polygon geometry contains all the points lying within the exterior

boundary, so it makes sense to calculate the area (e.g. in square meters) of the polygon and

hence the area extent of the project site. Alternatively, but less typically for projects, the Polygon

can be referenced along a planar surface formed by the extrusion of the project’s linearExtent (see

the planar referencing discussion in Section 5.2.2.3 and Figure 5-26).

The projectDateTimeSpan records the (estimated) active time interval of the project.

The location property provides a location keyword for the project using a text value from a

controlled list.

The purpose property provides a text keyword description of the purpose for the project that is

intended to come from a controlled list.

The contracts property contains details about the contract(s) associated with the project,

including the type of contract, references to files/documents, clients, and contractors.

DIGGS V2.0.a Documentation

 Page 66

An example instance of a Project is shown in Figure 5-7.

Figure 5-7: Example Project Instance Viewed with DIGGS Excel Tool

5.2.2 Sampling Features

Sampling features are in an abstract (non-instantiable) class of features with common

properties and attributes that all sampling features inherit including: investigativeTargetRef,

projectRef, originalProjectRef, associatedProjectRef, groupRef, measurementRef, layerSystemRef,

samplingActivityRef and sensorRef. All these inherited properties with the ‘Ref’ suffix are used to

reference the associated features (either by gml:identifier or gml:id) as indicated by the property

name.

Sampling features are further divided into 3 abstract subclasses based on their geometry type:

Point, Linear and Planar as shown in Figure 5-8.

DIGGS V2.0.a Documentation

 Page 67

Figure 5-8: The Abstract Sampling Feature Class and its Properties and Subclasses

DIGGS V2.0.a Documentation

 Page 68

Each subclass of the sampling feature (Point, Linear, and Planar) is described separately in the

following subsections.

5.2.2.1 Point Sampling Features

The Point Sampling feature class is an abstract class represented by the

AbstractPointSamplingFeature element that inherites all the properties from the Sampling feature

class. The Point Sampling feature class defines common properties and attributes that all point

sampling features will inherit including: referencePoint, referencePointAccuracy, and linearReferencing as

shown in Figure 5-9.

Figure 5-9: The Point Sampling Feature Class and its Properties and Subclass (Station)

The referencePoint property contains a PointLocation geometry that represents the location of the

sampling feature. The PointLocation can be defined as a list of coordinates or can be referenced as

a distance along a piece-wise linear curve (gml:LineString). In either case, the positional accuracy is

DIGGS V2.0.a Documentation

 Page 69

recorded by the referencePointAccuracy property. In the case where the position is referenced along

an existing well-known curve, the linearReferencing property describes the reference curve, the

starting point for measuring along the curve, and the units of measure (see Section Error!

Reference source not found. for the details of the GML encoding of reference positions

along a curve and the following examples) as illustrated in Figure 5-10.

Figure 5-10: A Linear Referenced PointLocation (P1) at a Distance d from the Start Along a Curve

An example excerpt of the PointLocation P1 could be as follows:

 <diggs:PointLocation gml:id="P1" srsDimension="1" srsName="#LinearReferncingSRS1">
 <gml:pos>d</gml:pos>
 </diggs:PointLocation>

Note that the PointLocation P1 references a Linear Reference System (defined by the LinearSRS

element) in its srsName attribute (LinearReferncingSRS1), which can be used to represent a sample

or activity location, a hole depth, or a general reference point for a feature. Note also that any

point geometry in GML, besides the diggs:PointLocation, can make use of linear referencing along

a curve by using the srsName attribute to reference an appropriate LinearSRS.

The Linear Referencing system in turn specifies the linearElement, which is the reference curve L1

in this case as shown in Figure 5-10, and the linear referencing method, which is typically

Distance d

measured

along the

curve

P1

A PointLocation located a

distance of d units from the

start point along the curve

L1
An existing LineString used for referencing point
positions along its length

Start point for

measuring

distances along

the curve

DIGGS V2.0.a Documentation

 Page 70

measured from the start of the curve in specified units (meters in the example). The Linear

Referencing system can be represented as shown in the following example instance.

 <gmllr:LinearSRS gml:id="LinearReferncingSRS1">
 <gmllr:linearElement>
 <gml:LineString srsName="urn:def:crs:EPSG:4326" srsDimension="3" gml:id="L1">
 <gml:posList>x1 y1 z1 x2 y2 z2 … x50 y50 z50</gml:posList>
 </gml:LineString>
 </gmllr:linearElement>
 <gmllr:lrm>
 <gmllr:LinearReferencingMethod gml:id="LRM001">
 <gmllr:name>chainage</gmllr:name>
 <!--chainage = measurement along curve in metres -->
 <gmllr:type>absolute</gmllr:type>
 <!--absolute = measure from start of linear element -->
 <gmllr:units uom="m"/>
 </gmllr:LinearReferencingMethod>
 </gmllr:lrm>
 </gmllr:LinearSRS>

Note that the LineString L1 was specified by absolute geographic 3D coordinates (x1, y1, z1), (x2, y2,

z2), …, (x50, y50, z50) and the PointLocation P1 was specified as a relative position measured a

distance of d units (meters) along the curve L1 from the start point (which is the beginning of the

curve by default). Example instances of PointLocation elements are shown in Figure 5-11.

Figure 5-11: Example PointLocation Instances Viewed by DIGGS Excel Tool

DIGGS V2.0.a Documentation

 Page 71

The first two PointLocation instances (with gml:id’s: a34 and cpt1) in Figure 4-11 are defined in

absolute 3D coordinates (Northing, Easting, Height) in meters (and were used as the CRS

example of Figure 4-11). The latter three PointLocation instances shown in Figure 5-11 (with

gml:id’s: cptd, pt1-1 and pt1-2) are defined as distances along two different LineString curves as

defined in the Linear Spatial Reference System instances shown in Figure 5-12.

Figure 5-12: Example LinearSpatialReferenceSystem Instances Viewed by DIGGS Excel Tool

Station

The Station feature is a concrete point sampling feature with no subclasses. The Station represents

a point on the earth's surface where observations or tests are performed, where samples are

collected, or where monitoring devices are installed.

The Station feature has the type property, as shown in Figure 5-17, to specify the kind of station

feature it is (eg. outcrop, survey marker, etc.), which is intended to come from a list of codes by

a controlling authority.

DIGGS V2.0.a Documentation

 Page 72

Figure 5-13: The Station Feature and its Properties

Putting together the linear reference examples in the context of a Station, with a reference point

and linear reference system encoding could be as follows:

<diggs:Station gml:id="Station001">
 …
 <diggs:referencePoint>
 <diggs:PointLocation gml:id="P1" srsDimension="1" srsName="#LinearReferncingSRS1">
 <gml:pos>d</gml:pos>
 </diggs:PointLocation>
 </diggs:referencePoint>
 <diggs:referencePointAccuracy>
 <diggs:LocationAccuracy>
 <diggs:measurementMethod

codeSpace="http://www.oxygenxml.com/">measurementMethod0</diggs:measurementMethod>
 <diggs:result uom="uom1">0</diggs:result>
 </diggs:LocationAccuracy>
 </diggs:referencePointAccuracy>
 <diggs:linearReferencing>
 <gmllr:LinearSRS gml:id="LinearReferncingSRS1">
 <gmllr:linearElement>
 <gml:LineString srsName="urn:def:crs:EPSG:4326" srsDimension="2" gml:id="L1">
 <gml:posList>x1 y1 x2 y2 x3 y3 … x50 y50</gml:posList>
 </gml:LineString>
 </gmllr:linearElement>
 <gmllr:lrm>
 <gmllr:LinearReferencingMethod gml:id="LRM001">
 <gmllr:name>chainage</gmllr:name>

DIGGS V2.0.a Documentation

 Page 73

 <!--chainage = measurement along curve in metres -->
 <gmllr:type>absolute</gmllr:type>
 <!--absolute = measure from start of linear element -->
 <gmllr:units uom="m"/>
 </gmllr:LinearReferencingMethod>
 </gmllr:lrm>
 </gmllr:LinearSRS>
 </diggs:linearReferencing>
 <diggs:type>outcrop</diggs:type>
</diggs:Station>

5.2.2.2 Linear Sampling Features

The Linear Sampling feature class is an abstract class represented by the

AbstractLinearSamplingFeature element that inherites all the properties from the Sampling feature

class. The Linear Sampling feature class defines common properties and attributes that all point

sampling features will inherit including: referencePoint, referencePointAccuracy, centerLine, and

linearReferencing, as shown in Figure 5-14.

Figure 5-14: The Linear Sampling Feature Class and its Properties

DIGGS V2.0.a Documentation

 Page 74

The referencePoint, referencePointAccuracy and linearReferencing properties serve the same purpose as

for Point sampling features (see Section 5.2.2.1).

The centerLine property contains a diggs:LinearExtent, which is a linear curve geometry that

represents the shape and location of the sampling feature. The LinearExtent geometry can be

defined by a list of direct positions in a coordinate reference system or it can be referenced (e.g.

in the case of a LithologyLayer or a Well feature) along another existing, well-known curve (e.g. the

parent Borehole’s center line geometry), where the direct positions of the LinearExtent are just

linear referenced in the same way as for Point Sample features. An example of such a LinearExtent

referenced along another curve is illustrated in Figure 5-15.

Figure 5-15: The LinearExtent Segment can be Referenced Along Another Curve L1

An example instance of the LinearExtent could be as follows:

 <diggs:LinearExtent gml:id="LinearExtent001" srsDimension="1" srsName="#LinearReferncingSRS1">
 <gml:posList>d1 d2</gml:posList>
 </diggs:LinearExtent>

The LinearExtent references a linear reference system (LinearSRS) in its srsName attribute

(LinearReferncingSRS1), which in this case is the same as for Figure 5-10.

The concrete subclasses of the linear sampling features are: Borehole, Transect, TrialPit, and Well, as

shown in Figure 5-16.

d1

First distance measured from start

point of LinearExtent

L1

An existing LineString (e.g. Borehole center line)

geometry used for referencing the LinearExtent of

another feature (e.g. LithologyLayer) along its length

Start point for measuring distance

–at beginning of L1

d2

Second distance measured from

start point of LinearExtent

LinearExtent

A curve segment (e.g. LithologyLayer or

Well geometry) referenced along

another curve L1 (e.g. Borehole geometry)

DIGGS V2.0.a Documentation

 Page 75

Figure 5-16: The Linear Sampling Feature Class and its Subclasses: Borehole, Transect, TrialPit, Well

Borehole

The Borehole feature is a concrete linear sampling feature with no subclasses. The Borehole

represents a deep, narrow excavation made by drilling or insertion of a probe. Boreholes are

constructed typically for the purpose of investigating subsurface geologic or geotechnical

conditions, exploring for water or oil, for installation of wells or other downhole monitoring

installations.

The Borehole feature has the properties: totalMeasuredDepth, boreholePurpose, backfill, casings,

constructionMethods, constructionEvents, chiselings, flushes, holeDiameters, and waterStrikes as shown in

Figure 5-17.

DIGGS V2.0.a Documentation

 Page 76

Figure 5-17: The Borehole Feature and its Properties

The totalMeasuredDepth property records the depth to the bottom of the hole, measured along a

Borehole's linear referencing system.

The boreholePurpose property provides a description of the purpose for drilling the hole (eg.

Exploratory boring or monitoring well) and is intended to come from a controlled list.

The backfill property records relevant information on the construction of the Borehole backfill after

drilling.

The backfill property contains information on the Borehole casing installed while drilling.

The constructionMethods property provides information regarding construction of the hole over

different depth intervals. Some example ConstructionMethod instances are shown in Figure 5-18.

DIGGS V2.0.a Documentation

 Page 77

us

Figure 5-18: Example ConstructionMethod Instance Viewed with DIGGS Excel Tool

Note that the reference “#equip-1” to the equipment used contains a link from the

ConstructionMethod worksheet to the corresponding Equipment object worksheet - example

instances the Equipment object worksheet are shown in Figure 5-19.

Figure 5-19: Example Equipment Instance Viewed with DIGGS Excel Tool

In turn, the Equipment instance (cone-1) contains a link to a Detector instance (det-1) and is

shown in Figure 5-20.

DIGGS V2.0.a Documentation

 Page 78

Figure 5-20: Example Detector Instance Viewed with DIGGS Excel Tool

The constructionEvents property is meant to provide information on borehole construction events

with time.

The chiselings property describes chiseling activity in the Borehole.

The flushes property provides information about events when the Borehole is flushed with fluid.

The holeDiameters property records various Borehole diameters with depth.

The waterStrikes property provides information on when ground water is struck during drilling of

the Borehole.

An example instance of a Borehole is shown in Figure 5-21.

DIGGS V2.0.a Documentation

 Page 79

Figure 5-21: Example Borehole Instance Viewed with DIGGS Excel Tool

Transect

The Transect feature is a concrete, generic linear sampling feature with no subclasses. The Transect

extends along the surface of an investigation target; used for such features as transects,

measured sections, etc.

DIGGS V2.0.a Documentation

 Page 80

The Transect feature inherits the properties and attributes from the Linear Sampling Features

class and does not add any new ones.

Figure 5-22: The Generic Transect Feature is an Empty Extension of the Linear Sampling Feature

TrialPit

The TrialPit feature is a concrete linear sampling feature with no subclasses. The TrialPit is a

relatively shallow excavation into the earth's surface, dug either manually or by a mechanical

excavator. Samples, observations and tests in the trial pit are referenced in a linear referencing

system only (1D). This is a legacy sampling feature to support AGS trial pit constructs. The

trench wall sampling feature should be used to represent more detail on walls of pits or trenches

in 2D.

The TrialPit feature has the properties: totalMeasuredDepth, pitLength, backfill, casings, constructionMethods,

constructionEvents, chiselings, flushes, holeDiameters, and waterStrikes as shown in Figure 5-23.

DIGGS V2.0.a Documentation

 Page 81

Figure 5-23: The Trialpit Feature and its Properties

The totalMeasuredDepth property records the maximum depth of the pit, along a linear reference

system.

The pitLength property contains the length of the long horizontal dimension of the pit.

The pitWidth property provides the width of the short horizontal dimension of the pit.

The shoring property provides a description of shoring equipment and method.

DIGGS V2.0.a Documentation

 Page 82

The trialPitPurpose property describes the purpose for excavating the pit (eg. exploratory) and is

intended to come from a controlled list.

The backfill property provides information on the construction of the TrialPit backfill.

The constructionMethods property contains information regarding the construction of the pit over

different depth intervals.

The constructionEvents property records information on the construction of the trial pit with time.

Well

The Well feature is a linear sampling feature that is an installation within a borehole, used for

observing, withdrawing, or injecting fluids. Although wells are discrete sampling features in

their own right, they are installed within boreholes, and should reference a borehole feature

within the parentBorehole property, if the associated borehole feature is instantiated. Multiple Wells

within a borehole should be contained within a group feature and referenced in the groups

property.

The Well feature has the properties: parentBorehole, wellDepth, wellPurpose, fluidPurpose, sanitarySealType,

sanitarySealDepth, wellFinishType, initialDevelopmentMethod, initialDevelopmentTime, wellSpecialTreatment,

maintenanceEvents, wellAbandonment, casings, and openings as shown in Figure 5-24.

DIGGS V2.0.a Documentation

 Page 83

Figure 5-24: The Well Feature and its Properties

DIGGS V2.0.a Documentation

 Page 84

The parentBorehole property provides reference to the Borehole feature within which the Well is

installed.

The wellDepth property records the measured depth to the bottom of the Well, measured in the Well's

linear referencing system.

The wellPurpose property describes the purpose for installing the hole (eg. ground water,

withdrawal, observation, etc.) and is intended to come from a controlled list.

The fluidPurpose property describes whether the Well is used for production or extraction and a

code or description of the purpose for the fluid (eg. public supply, municipal, etc.)

The sanitarySealType property indicates the type of material used for the sanitary or surface seal

(eg. bentonite, grout, etc.)

The sanitarySealDepth property records the depth to the base of the sanitary seal.

The wellFinishType property contains a description of how the Well is finished (eg. gravel pack with

perforations, open end, sand point, etc.)

The initialDevelopmentMethod property describes the method used to develop the Well after initial

construction (eg. compressed air, surged, etc.)

The initialDevelopmentTime property records the time required for the initial development of the Well.

The wellSpecialTreatment property describes any special procedures employed upon initial

development of the Well.

The maintenanceEvents property provides information on the occurrence and activities involved in

Well maintenance and servicing.

The wellAbandonment property contains information on the occurrence and procedures performed

upon abandoning the Well.

The casings property provides information on the well casing installed.

The openings property provides information on the location and type of the Well openings (or

perforations) installed to allow fluid communication between the Well and adjacent earth material.

DIGGS V2.0.a Documentation

 Page 85

5.2.2.3 Planar Sampling Features

The Planar Sampling feature class is an abstract feature class represented by the

AbstractPlanarSamplingFeature element that inherites all the properties from the Sampling feature

class. The Planar Sampling feature class defines common properties and attributes that all

planar sampling features will inherit including: referencePoint, referencePointAccuracy, referenceEdge,

relativeFeatureBoundary, and planarReferencing as shown in Figure 5-25.

Figure 5-25: The Planar Sampling Feature Class, its Subclasses and Properties

The referencePoint and referencePointAccuracy serve the same purpose as for both the point and

linear sampling features (see Section 5.2.2.1).

The referenceEdge property contains a diggs:LinearExtent, which is a linear curve geometry that

represents the shape and location of the reference edge of a surface. The LinearExtent geometry is

DIGGS V2.0.a Documentation

 Page 86

typically defined by a list of direct positions in an earth based coordinate reference system when

representing a reference edge.

The relativeFeatureBoundary property defines the polygon extent of the planar feature using a

absolute (non-relative) CRS. This element should be used for visual representations using

mapping software that does not support planar referencing.

The relativeFeatureBoundary property contains a polygon extent of the planar feature using a relative

planar referencing system (must use planarReferencing property contents). This element should

be used for software that can handle planar referencing (e.g. LinearSpatialReferenceSystem in GML

3.3)

The planarReferencing property describes the reference curve, the starting point for measuring

along the curve, one or more offset vectors the units of measure (see Section Error! Reference

source not found. for the details of the GML encoding of reference positions along a curve

and the following examples) as illustrated in Figure 5-10.

An example of referencing with an offset vector (planar referencing) is illustrated in Figure 5-26.

DIGGS V2.0.a Documentation

 Page 87

Figure 5-26: Points and Polygons Referenced Along the Extrusion of L in the direction of v (Surface

S)

Any one of the PointLocations: P1, P2, P3, P4, P5, P6, can serve as the reference point for the planar

sampling feature (but only 1 referencePoint property is allowed), e.g. as follows:

<diggs:referencePoint>
 <diggs:PointLocation gml:id="P1" srsDimension="2" srsName="#LROV001">
 <gml:pos>1 2</gml:pos>
 </diggs:PointLocation>
</diggs:referencePoint>

<diggs:referencePoint>
 <diggs:PointLocation gml:id="P2" srsDimension="2" srsName="#LROV001">
 <gml:pos>1 4</gml:pos>
 </diggs:PointLocation>
</diggs:referencePoint>

<diggs:referencePoint>
 <diggs:PointLocation gml:id="P3" srsDimension="2" srsName="#LROV001">

v Offset vector

L

A LineString

representing

the reference

edge (e.g. of

a TrenchWall)

Polygon P

Referenced

along surface S

Surface S

An extrusion of L in

the direction of v

(e.g. representing a

TrenchWall)

Start point

on L

P4 (5,6)

5m along L, then 6m

in direction of v

P1 (1,2)

P2 (1,4)

P3 (5,4)

P6 (10,2)

P5 (10,6)

10m along L, then

6m in direction of v

DIGGS V2.0.a Documentation

 Page 88

 <gml:pos>5 4</gml:pos>
 </diggs:PointLocation>
</diggs:referencePoint>

<diggs:referencePoint>
 <diggs:PointLocation gml:id="P4" srsDimension="2" srsName="#LROV001">
 <gml:pos>5 6</gml:pos>
 </diggs:PointLocation>
</diggs:referencePoint>

<diggs:referencePoint>
 <diggs:PointLocation gml:id="P5" srsDimension="2" srsName="#LROV001">
 <gml:pos>10 6</gml:pos>
 </diggs:PointLocation>
</diggs:referencePoint>

<diggs:referencePoint>
 <diggs:PointLocation gml:id="P6" srsDimension="2" srsName="#LROV001">
 <gml:pos>10 2</gml:pos>
 </diggs:PointLocation>
</diggs:referencePoint>

An example instance of a relative feature boundary that uses the Polygon P could be as follows.

Note that the previous PointLocations: P1, P2, P3, P4, P5, P6 are reused in this example and the first

point P1 is repeated at the end to close up the linear ring.

<diggs:relativeFeatureBoundary>
 <gml:Polygon gml:id="P" srsDimension="2" srsName="#LROV001">
 <gml:exterior>
 <gml:LinearRing>
 <gml:pointProperty xlink:href=”#P1”/>
 <gml:pointProperty xlink:href=”#P2”/>
 <gml:pointProperty xlink:href=”#P3”/>
 <gml:pointProperty xlink:href=”#P4”/>
 <gml:pointProperty xlink:href=”#P5”/>
 <gml:pointProperty xlink:href=”#P6”/>
 <gml:pointProperty xlink:href=”#P1”/>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
</diggs:relativeFeatureBoundary>

An equivalent example instance of a relative feature boundary instance that uses the Polygon P

with all the referenced coordinates (distance along L1, distance along v) encoded inline (no point

locations referenced) is as follows:

<diggs:relativeFeatureBoundary>
 <gml:Polygon gml:id="P" srsDimension="2" srsName="#LROV001">
 <gml:exterior>
 <gml:LinearRing>

DIGGS V2.0.a Documentation

 Page 89

 <gml:posList>1 2 1 4 5 4 5 6 10 6 10 2 1 2</gml:posList>
 </gml:LinearRing>
 </gml:exterior>
 </gml:Polygon>
</diggs:relativeFeatureBoundary>

In all the encodings of the PointLocation elements and Polygon P above, a Vector Linear Spatial

Reference System (with gml:id=”LROV001”) is referenced from the srsName attribute, which is

contained in the planarReferencing property and can be defined as follows:

 <diggs:planarReferencing>
 <diggs:VectorLinearSpatialReferenceSystem gml:id="LROV001">
 <gml:identifier codeSpace="…">…</gml:identifier>
 <glr:linearElement xlink:href="#L"/>
 <gmllr:lrm>
 <gmllr:LinearReferencingMethod gml:id="LRM001">
 <gmllr:name>chainage</gmllr:name>
 <!--chainage = measurement along curve in metres -->
 <gmllr:type>absolute</gmllr:type>
 <!--absolute = measure from start of linear element -->
 <gmllr:units uom="m"/>
 </gmllr:LinearReferencingMethod>
 </gmllr:lrm>
 <glrov:offsetVector srsName="urn:ogc:def:crs:EPSG::7405">1 0 0</glrov:offsetVector>
 <!--this is the offset vector v in the Figure above -->
 </diggs:VectorLinearSpatialReferenceSystem>
</diggs:planarReferencing>

An example instance of a Vector Linear Spatial Reference System from the DIGGS test data is

shown in Figure 5-27.

Figure 5-27: Example VectorLinearSpatialReferenceSystem Instance Viewed by DIGGS Excel Tool

DIGGS V2.0.a Documentation

 Page 90

The concrete subclasses of the Planar Sampling feature are: TrenchWall and Face, which are

described in the following subsections.

Trench Wall

The TrenchWall feature is a concrete planar sampling feature with no subclasses. The Trenchwall

typically represents the vertical face of a trench or pit dug into the ground and is spatially

approximated by a surface.

The TrenchWall feature has the properties: shoring, trenchPurpose, backfill, constructionMethods, and

constructionEvents, as shown in Figure 5-28.

The shoring property provides a text description of the shoring equipment and method used for the

trench.

The trenchPurpose property specifies the purpose for excavating the trench (e.g. exploratory) and

is intended to come from a controlled list.

The backfill property provides information on the construction of the trench backfill covering the

trench wall exposure.

The constructionMethods property provides information regarding the construction of the pit over

different depth intervals.

The constructionEvents property records information on the construction of the trench with time.

DIGGS V2.0.a Documentation

 Page 91

Figure 5-28: The TrenchWall Feature and its Properties

The following example instance illustrates the use of planar referencing (using the previous

examples in Section 5.2.2.3) in the context of a TrenchWall feature.

 <TrenchWall gml:id="MyTrench">
 <gml:name>My trench</gml:name>
 <gml:identifier codeSpace="…">…</gml:identifier>
 <projectRef xlink:href="#p1"/>
 <groupRef xlink:href="#g1" identifierRef="urn:diggs:def:fi:USGS:usgs_g1"/>
 <referencePoint xlink:href="#P"/>
 <referenceEdge>
 <gml:LineString srsName="urn:diggs:def:crs:DIGGS:0.1:26911_5703" gml:id="RefEdge">
 <gml:posList>387516.665116977 3742645.12297961 500 387516.665116977 3742655.12297961 400
 387516.665116977 3742635.12297961 300 387516.665116977 3742655.12297961 200

DIGGS V2.0.a Documentation

 Page 92

 387516.665116977 3742645.12297961 100</gml:posList>
 </gml:LineString>
 </referenceEdge>
 <relativeFeatureBoundary xlink:href="#P"/>
 <planarReferencing xlink:href="#LROV001"/>
 <constructionMethods>
 <ConstructionMethod gml:id="cm22">
 <gml:description>backhoe</gml:description>
 <remarks>
 <Remark>
 <content>Backhoe was brand new and worked like a charm</content>
 </Remark>
 </remarks>
 </ConstructionMethod>
 </constructionMethods>
 </TrenchWall>

An example planar referenced TrenchWall polygon viewed as KML (generated by the DIGGS KML

Tool) in Google Earth is shown in Figure 7-2.

Face

The Face feature is a concrete, generic planar sampling feature with no subclasses. A Face

extends across the surface of an investigation target (e.g. the ground) and is used to represent

features such as an outcrop or embankment.

The Face feature inherits the properties and attributes from the Planar Sampling Features class

and does not add any new ones.

DIGGS V2.0.a Documentation

 Page 93

Figure 5-29: The Generic Face Feature is an Empty Extension of the Planar Sampling Feature

5.2.3 Measurement

The Measurement feature class is an abstract feature class represented by the AbstactMeasurement

element that inherites all the properties from the diggs:AbstractFeature class. The Measurement

feature class defines common properties and attributes that all measurement features (e.g.

Monitoring and Test) will inherit including: investigationTargetRef, projectRef, relatedSamplingFeatureRef,

sampleRef, samplingActivityRef, and parameters, as shown in Figure 5-30.

The first 5 properties with the ‘Ref’ suffix are used to reference, as indicated by the property

name, the corresponding features (either by gml:identifier or gml:id): AbstractInvestigationTarget, Project,

AbstractSamplingFeature, Sample, and SamplingActivity, respectively.

The parameters property is used to record environmental parameters, or event-specific

parameters that are not tightly bound to either the earth materials for which properties are

being estimated, or the procedure. Parameters that are tightly bound to the procedure should be

encoded within the procedure object.

DIGGS V2.0.a Documentation

 Page 94

Figure 5-30: The Measurement Feature Class, its Subclasses and its Properties

5.2.3.1 Monitoring

The Monitoring feature is a concrete linear sampling feature with no subclasses. The Monitoring

feature represents the act of observing/monitoring, whose results are estimates of the value of

properties of the investigation target, measured at a time instant or within a time interval, and at a

location or series of locations, derived from a test procedure.

The Monitoring feature has the properties: monitoringLocation, outcome, and process, as shown in

Figure 5-31.

DIGGS V2.0.a Documentation

 Page 95

The monitoringLocation property contains a geometry (point, curve, polygon) that represents the

monitoring location.

The outcome property contains the information about what properties are being measured, the

results of the measurement, and the associated locations that the measurement results relate to.

The process property contains metadata related to the monitoring/observation process, such as

equipment and specifications used.

Figure 5-31: The Monitoring Feature and its Properties

5.2.3.2 Test

The Test feature is a concrete linear sampling feature with no subclasses. The Test represents the

act testing/observing, whose results are estimates of the values of properties of the investigation

target, measured at a time instant or within a time interval, and at a location or series of

locations, derived from a test procedure.

DIGGS V2.0.a Documentation

 Page 96

The Test feature has the properties: samplingTime, resultTime, validTime, outcome, and procedure, as

shown in Figure 5-34.

The samplingTime property provides the time interval that the result applies to. This is often the

time of interaction by a sampling activity or measurement procedure with a real-world feature.

The resultTime property describes the time when the result became available, typically when the

procedure associated with the observation was completed. For some observations, this is

identical to the sampling time. However, there are important cases where they differ. The result

time is the time when the procedure associated with the measurement act was applied. For some

measurements this is identical to sampling time, in which case the result time may be omitted.

For example, where a measurement is made on a specimen in a laboratory, the sampling time

should record the time the specimen was retrieved from its host, while the result time should

record the time the laboratory procedure was applied. As another example, where monitoring

observation results are post-processed, the resultTime is the post-processing time, while the

samplingTime preserves the time of initial interaction with the world.

The validTime property describes the time period during which the result is intended to be used.

The outcome property contains test result information (encoded in the TestResult object), i.e. what

properties are being measured, the results of the measurement, and the associated locations that

the measurement results relate to. Some example TestResult instances with various

measurements at different point locations linearly referenced along a Borehole centerline is

shown in Figure 5-32 – the TestResult is encoded using a GML MultiPoint Coverage and is

viewed in tabular spreadsheet form using the DIGGS Excel Tool.

Figure 5-32: Example TestResult Instances Viewed in DIGGS Excel Tool

DIGGS V2.0.a Documentation

 Page 97

Note that for the TestResult with gml:id=”m103”, the measurements such as Qc (tip resistance), Fs

(sleeve friction), Friction Ratio, and u1 (pore water pressure) are recorded for each borehole

depth location. The definition of each property measurement is linked from the spreadsheet to

the corresponding Property object worksheet - example instances of the related Property objects

are shown in Figure 5-33 as viewed with the DIGGS Excel Tool.

Figure 5-33: Example Property Descriptions Viewed in DIGGS Excel Tool

The procedure property contains the metadata about the testing procedure, including the

equipment and specifications used.

DIGGS V2.0.a Documentation

 Page 98

Figure 5-34: The Test Feature and its Properties

5.2.4 SamplingActivity

The SamplingActivity feature is a concrete feature with no subclasses. The SamplingActivity represents

the action taken to obtain or produce a physical sample, although the activity may not produce a

sample (e.g. a core run that produces no recovery). This activity typically occurs at a location on

a sampling feature, or could occur elsewhere (eg. a laboratory) in the case of test or blank

samples, or can produce aggregate samples where the location of the samples produced have no

meaning. Note that all Sample features must refer to a SamplingActivity feature.

DIGGS V2.0.a Documentation

 Page 99

The SamplingActivity feature has the properties: investigationTargetRef, projectRef,

relatedSamplingFeatureRef, measurementRef, sourceSample, activityLocation, samplesProduced,

derivedSampleType, samplingDate, samplingEnvironment, samplingEquipmentRef, samplingEquipment,

samplingProcedureRef, and samplingProcedure, as shown in Figure 5-35.

All of the properties with the ‘Ref’ suffix are used to reference the associated features (either by

gml:identifier or gml:id) as indicated by the property name.

The sourceSample property contains a reference to a sample or samples that are used to create the

sample (identified by the sampleRef attribute) produced by this activity. This element is only used

for activities that sub-sample or aggregate samples from other samples. For aggregate samples,

the percentage attribute optionally defines how much of the total new sample is composed from

the source sample.

The activityLocation property contains a geometry representing the location of the activity.

The samplesProduced property contains a geometry location of the sample and a reference to the

Sample feature.

The derivedSampleType property indicates the type of sample created by this activity using a

controlled vocabulary, intended be used by applications to validate other activity information:

 collected –sample was created by collection at a sampling feature;

 aggregate – activity created a sample by aggregating existing samples; sourceSamples

should have more than one subelement;

 subsample – activity created a sample by subsampling an existing sample. Only one

sourceSampleRef should be specified.

 test – activity produced a test, standard or blank sample that does not relate to any field

sample; activity should be related to a project and no sourceSampleRef should be

specified.

 none – the sample activity failed to produce a physical sample.

The samplingDate property records the date and time for the activity.

The samplingEnvironment property records barometric pressure, gas flow, gas pressure and

temperature measurements.

The samplingEquipment property contains details, such as model, serial number, and calibration

information of the equipment used.

DIGGS V2.0.a Documentation

 Page 100

Figure 5-35: The Sampling Activity Feature and its Properties

DIGGS V2.0.a Documentation

 Page 101

5.2.5 Sample

The Sample feature is a concrete linear sampling feature with no subclasses. The Sample feature

represents a specimen of earth material, liquid or gas that is obtained as a result of a sampling

activity, for the purpose of testing and/or observation.

The Sample feature has the properties: projectRef, samplingActivityRef, groupRef, classification, purpose,

condition, matrix, medium, cylindricalSampleDetails, blockSampleDetails, primaryLithology, componentLithologies

and chainOfCustodyEvents as shown in Figure 5-39.

All of the properties with the ‘Ref’ suffix are used to reference the associated features (either by

gml:identifier or gml:id) as indicated by the property name.

The classification property specifies the class of the sample collected. This is intended to come

from a controlled list of values.

The purpose property provides a text description of the purpose of taking this sample. This is a

free text string (not a controlled list) that may describe the test or tests that are intended to be run

on this sample.

The condition property provides a text description of the sample condition.

The matrix property provides description of the sample matrix, if applicable. This is intended to

come from a controlled list.

The medium property describes the medium of the Sample (e.g. gas, liquid, solid). This is intended

to come from a controlled list.

The cylindricalSampleDetails property provides a more detailed description of the Sample in the case

that the Sample is a core (i.e. cylindrical with integrity such that the location of the ends of the

sample can be defined in space). An example instance of the CylindricalSampleDetail value object

of this property is shown in Figure 5-36.

DIGGS V2.0.a Documentation

 Page 102

Figure 5-36: Example of CylindricalSampleDetail Viewed with the DIGGS Excel Tool

The blockSampleDetails property provides a more detailed description of the Sample in the case of a

block Sample with integrity and measurable width, height, and depth.

The primaryLithology property describes the lithology of the sample (if derived from earth

materials). For a core sample consisting of multiple lithologies, this element should generally be

left blank and a lithologyLayerSystem should be created to carry the lithologic descriptions

related to core samples.

The componentLithologies property describes the lithologies that make up a minor portion of the

sample. An example instance of a ComponentLithology value object of this property is shown in

Figure 5-37.

Figure 5-37: Example of ComponentLithology Viewed with the DIGGS Excel Tool

The chainOfCustodyEvents property contains information on the chain-of-custody for this sample.

An example instance of the ChainOfCustodyEvent value object of this property is shown in Figure

5-38.

DIGGS V2.0.a Documentation

 Page 103

Figure 5-38: Example of ChainOfCustodyEvent Viewed with the DIGGS Excel Tool

DIGGS V2.0.a Documentation

 Page 104

Figure 5-39: The Sample Feature and its Properties

DIGGS V2.0.a Documentation

 Page 105

5.2.6 LayerSystem

The LayerSystem feature is a concrete named feature with no subclasses. The LayerSystem

represents a collection of layers that contain observations or interpretations made over a region

or interval a sampling feature.

The LayerSystem feature has the properties: projectRef, relatedSamplingFeatureRef and layers as shown

in Figure 5-40.

The projectRef and relatedSamplingFeatureRef are used to reference (either by gml:identifier or gml:id) a

Project or Sampling Feature, respectively.

The layers property contains a sequence of layer features, including:

ColorLayer - A color layer describes the color of materials encountered. All layers within a color

layer system must not overlap, although multiple colors can be described within a single zone.

ConstituentLayer - Constituent layers describe details of earth materials encountered within a

sampling feature. Constituent layers restricted to a specific lithologic layer are encoded as

constituents in the Lithology layers themselves. Layers within a constituent layer system need

not be continuous and may overlap, but layers with the same named constituents cannot overlap.

DiscontinuityLayer - Describes fractures and joints and their spacing. Individual discontinuities or

zone of discontinuities within a discontinuity layer system may overlap.

LithologyLayer – Lithology layers that describe the earth materials encountered at a sampling

feature defined by the layer's location. Layers within a lithology layer system must not overlap.

OrientationLayer – Orientation layers describe the geometry of vectors or planar surfaces

encountered at a sampling feature, such as bedding, joints, cross-beds, etc. These layers are

designed to characterize regions with generalized geometries. Individual measurements of planar

geometries of boundaries or faults are recorded in Discontinuity or Lithology layers. Layers

within an orientation zone system must not overlap.

PropertyLayer – A property layer system contains layer that are defined by simple text or numeric

values - usually interpreted as a result of some lab or in-situ test. Layers within a property layer

system must not overlap and the value of the gml:name of each property layer must be the same

among all layers in the system.

StratigraphyLayer – Stratigraphy layers are ordered bodies of rock or sediment, such as formations,

biostratigraphic units or aquifers. Layers within a stratigraphy layer system must not overlap, and

DIGGS V2.0.a Documentation

 Page 106

stratUnit values within a layer system cannot repeat (eg. they must be unique within the layer

system.

OtherLayer – A structure for defining a layer system of unknown type. Layers consist of name-

value pairs, where these names should reference code lists.

Figure 5-40: The LayerSytem Feature and its Properties

5.2.7 Group

The Group feature class is an abstract feature class represented by the AbstactGroup element that

inherites all the properties from the diggs:AbstractNamedFeature class and does not define any new

properties. The Group feature class has four concrete subclasses: GroupGroup, ProjectGroup,

SampleGroup and SamplingFeatureGroup, as shown in Figure 5-41.

The ProjectGroup contains a list of references (via the associatedProjectRef property) to Project

features. Likewise, the SampleGroup contains a list of references to Sample features, the

DIGGS V2.0.a Documentation

 Page 107

SamplingFeaturesGroup contains a list of references to sampling features, and the GroupGroup

contains a list of references to other Group features.

Figure 5-41: The Group Feature and its Subclasses

5.3 Feature Metadata

The Metadata object class is an abstract object class represented by the diggs:AbstractMetadata

element that inherites all the properties from the DIGGS named object class and does not add

DIGGS V2.0.a Documentation

 Page 108

any new ones. The Metadata object class inherits the following properties: gml:name, status and

remarks, as shown in Figure 5-47.

Metadata objects provide contextual information (e.g. associated files) about the parent feature as

opposed to defining characteristics of the feature. The concrete subclasses of the metdata object

class are shown in Figure 5-48 and summarized as follows:

 Associated Files - references to non-XML documents or records outside of the XML

instance

 Business Associates - provides contact information of individuals or institutions, such as

address, phone number, email address, etc.

 Contracts – references to legal documents concerning sales, employment, or tenancy

 Document Information - information about the specific XML instance document

 Equipment – necessary tools to carry out procedures

 Specifications - a detailed description of the requirements, design, and/or materials for
procedures

Example instances of BusinessAssociate metadata are shown in Figure 5-42.

Figure 5-42: Example BusinessAssociate Instances Viewed in DIGGS Excel Tool

Note that Figure 5-42 shows that each BusinessAssociate metadata object can contain an Address

object, which are shown in Figure 5-43.

DIGGS V2.0.a Documentation

 Page 109

Figure 5-43: Example Address Instances Viewed in DIGGS Excel Tool

Examples of Equipment are shown in the context of construction methods of boreholes in Figure

5-19.

DIGGS also defines a Simple Metadata object class which is an abstract object class represented

by the diggs:AbstractSimpleMetadata element that carries just the gml:id attribute for identification

and linking. The concrete subclasses of the simple metdata object class are shown in Figure 5-49

and summarized as follows:

 Document Information –information about the author, date, language, etc. of documents.

 Location Accuracy – provides a measurement of accuracy and the measurement method.

 Remark– provides a text remark along with the author and date/time of the remark

 Role – describes the role performed by a business associate, time the role was performed

and related remarks about the role.

An example instance of DocumentInformation metadata is shown in Figure 5-44.

DIGGS V2.0.a Documentation

 Page 110

Figure 5-44: Example DocumentInformation Instances Viewed in DIGGS Excel Tool

Example instances of Remark metadata are shown in Figure 5-45.

Figure 5-45: Example Remark Instances Viewed in DIGGS Excel Tool

Example instances of Role metadata are shown in Figure 5-46.

Figure 5-46: Example Role Instances Viewed in DIGGS Excel Tool

DIGGS V2.0.a Documentation

 Page 111

Figure 5-47: Metadata Object Class and its Properties

DIGGS V2.0.a Documentation

 Page 112

Figure 5-48: Metadata Object Class and its Subclasses

Figure 5-49: Simple Metadata Class and its Subclasses

DIGGS V2.0.a Documentation

 Page 113

6 DIGGS 2.0a Schema Complexity Evaluation

This report also includes a measure of the XML complexity based on ‘stress-testing’ of the 2.0a

schemas. The complexity is measured by creating the most hypothetically complicated datasets

that the schemas will allow, i.e. by constructing a Document Object Model (DOM) from the

schemas and populating all possible elements/attributes with valid random values, so that the

data remains valid against the schemas. The creation of a DOM and data instances are

representative XML processing tasks that are typically required of XML software to perform

common tasks including conversion of queries and data to a relational database. The assessment

of DIGGS complexity was measured in a similar way for DIGGS V1.1 as shown in Section 3.2.2,

the only difference being an updated software environment (Oxygen Enterprise V14.0 running

on typical 2012 commodity hardware) and larger numbers of trials that the results were

averaged over.

6.1 Schema Load and Validate Performance

In the Oxygen Enterprise V14.0 Integrated Development Environment (IDE), the Complete.xsd

schema was loaded and validated (using the default Xerces J parser) with the most exhaustive

settings enabled including: ‘schema-full-checking’ and ‘honour all schema locations’.

DIGGS V2.0.a Documentation

 Page 114

6.1.1 Results

6.1.1.1 Load Test

The DIGGS 2.0a Complete.xsd schema took 0.9 seconds to load (uncached), compared with 6.5

seconds for V1.1, and 156 seconds for V1.0a.

6.1.1.2 Validation Test

The DIGGS 2.0a Complete.xsd schema took 0.5 seconds to validate after it was loaded upon first

validation (subsequent validation is faster), compared with 1.4 seconds for V1.1, and 87 seconds

for V1.0a.

Therefore the changes made to DIGGS 2.0a, since V1.0a resulted in a 173x speed-up to load and

174x speed-up to validate the Complete.xsd schema file using the same validator, settings, and

software environment.

DIGGS V2.0.a Documentation

 Page 115

6.2 Model Complexity assessment

Several options were set such as number of repetitions, maximum recursivity level, maximum

text string length, and nesting levels, prior to the automatic generation of DIGGS instances from

the schema using Oxygen 14. Several of these options were fixed for all of the data generation,

but two were varied as parameters: maximum recursivity and nest level (i.e. tree depth). These

two parameters were gradually increased across 27 test levels of maximum recursivity and tree

depth to observe the corresponding growth in data set size for each of the DIGGS schema

versions tested (1.0a, 1.1, and 2.0a). For V1.0a, the file size and execution time was prohibitively

exceeded after test level 8, and likewise for V1.1 after test level 17. On the other hand, results

were easily obtained and recorded for all 27 test levels for V2.0a. Figure 1-1 in Section 1

(Executive Summary) provides a comparison of the data size growth for each version across the

27 test levels. The following Subsections 6.2.1 and 6.2.2 provide details on the testing

environment and additional tables/graphs of the results.

6.2.1 Options Used for Oxygen V14.0 Random Instance Generation

The following screenshots provide a sample of the selected options for the example data

generation.

DIGGS V2.0.a Documentation

 Page 116

DIGGS V2.0.a Documentation

 Page 117

DIGGS V2.0.a Documentation

 Page 118

Note that the data values were selected randomly by the instance generation tool according to

the datatypes specified in the schemas. Fifty example data files were created for each of the

parameter settings and for each schema version. The file sizes were then averaged over the 50

trials.

6.2.2 Results

The dataset size grew as a function of the increasing recursion and nesting levels (tree depth) as

tested over 27 increasing tree depth levels. Table 6-1 summarizes the results across all 27 test

levels, including the specific Oxygen data generations settings for each level, and the resulting

file size averages. Figure 6-2 shows the V1.0a data increasing exponentially without bound up to

test level 8, until computer memory limits were exceeded. Figure 6-3 shows the V1.1 data

growth rate lower than that of V1.0a, but since recursive loops still remained in the DIGGS

DIGGS V2.0.a Documentation

 Page 119

schemas, the V1.1 data size also increased exponentially without bound. By V2.0a, all recursion

was removed from the schemas and the data size was shown to have an upper bound (< 1 MB) as

illustrated in Figure 6-4, with the average file size approaching 500KB. Note that the maximum

recorded file size was 737KB out of several thousands of generated files.

The comparison of data size growth with test levels for each pair of schema versions: V1.0a vs

1.1, V1.0a vs 2.0a, and V1.1 vs V2.0a, are shown in Figure 6-5, Figure 6-6, and Figure 6-7,

respectively.

The fully detailed tables of the file data statistics captured for each version are contained in the

accompanying spreadsheet file DIGGS2.0aSchemaComplexity.xlsx.

Test #
Maximum
Repetitions

Maximum
Recursivity

Nest level/
tree depth # of files

V2.0a avg
file size

V1.1 avg
file size

V1.0a avg
file size

1 2 1 4 50 42.69 19.71 79.84

2 2 2 5 50 73.96 37.71 200.68

3 2 2 6 50 113.50 94.13 1057.42

4 2 2 7 50 165.47 141.88 2655.65

5 2 2 8 50 212.25 217.48 6124.04

6 2 2 9 50 255.82 305.96 14474.30

7 2 2 10 50 320.87 415.18 42344.12

8 2 3 11 50 356.73 637.98 137141.19

9 2 3 12 50 397.60 960.40
 10 2 4 13 50 435.26 1386.21
 11 2 5 14 50 443.70 2185.61
 12 2 5 15 50 471.58 3329.01
 13 2 6 16 50 480.71 5414.70
 14 2 6 17 50 484.36 9900.67
 15 2 6 18 50 477.50 17060.59
 16 2 6 19 50 487.07 25387.20
 17 2 6 20 50 471.45 54042.73
 18 2 7 21 50 485.99

 19 2 8 23 50 475.69
 20 2 9 25 50 487.83
 21 2 10 27 50 481.41
 22 2 10 30 50 481.43
 23 2 20 50 50 484.32
 24 2 50 100 50 493.09
 25 2 60 120 50 473.00
 26 2 70 140 50 485.81
 27 2 80 160 50 478.99

Table 6-1: DIGGS Data Test Levels, Settings, and Average File Size Results for V1.0a, 1.1 and 2.0a

DIGGS V2.0.a Documentation

 Page 120

Figure 6-2: DIGGS V1.0a Data Size (KB) up to Test Level 8

Figure 6-3: DIGGS V1.1 Data Size (KB) up to Test Level 17

Figure 6-4: DIGGS V2.0a Data Size (KB) up to Test Level 27

DIGGS V2.0.a Documentation

 Page 121

Figure 6-5: DIGGS V1.0a and V1.1 Data Size (KB) Comparison

Figure 6-6: DIGGS V1.0a and V2.0a Data Size (KB) Comparison

Figure 6-7: DIGGS V1.1 and V2.0a Data Size (KB) Comparison

DIGGS V2.0.a Documentation

 Page 122

7 Specialized DIGGS Tools

Two software tools (DIGGS Excel Tool and DIGGS KML Tool) were developed and released with

DIGGS 2.0a to test the usability of DIGGSML 2.0 and facilitate its adoption. These tools are

convenient software utilities that were developed to process DIGGSML data and to demonstrate

that DIGGS V2.0a is implementable and can be supported by custom and third party software

tools (e.g. GeoTools) using common web technology standards, best practices and techniques.

The following sub-section 7.1 provides a brief overview of each of these tools.

7.1 Overview

7.1.1 DIGGS Excel Tool

The DIGGS Excel Tool was designed to present the text of DIGGSML data in a human readable

spreadsheet format (Microsoft Excel XLS). The tabular representation of DIGGS data in Excel

follows the standard XML mapping best practice as summarized in the following table and

illustrated with a screen shot from the DIGGS Excel Tool in Figure 7-1.

General DIGGSML to Excel Table Mapping Rules

DIGGSML Excel

Feature/Object Name (element name) Worksheet Name

Feature/Object Content (complexType contents) Table in Worksheet

 Property element name
 Property value (simple)

 Table row under ‘Property Name’ column
 Value entered in cell under ‘Value’ column

 Property value (complex/Object) Linked cell to new worksheet under ‘Value’ column

 Attribute name
 Attribute value (always simple)

 Table row under ‘Attribute Name’ column
 Value entered in cell under ‘Value’ column

Figure 7-1: DIGGS Data Layout in Project Worksheet of DIGGS Excel Tool

DIGGS V2.0.a Documentation

 Page 123

7.1.2 DIGGS KML Tool

The DIGGS KML Tool was designed to visualize 3D DIGGS data (primarily location, shape and

identification information) in a popular and freely available earth browser (as KML in Google

Earth). The DIGGS KML Tool supports coordinate transformations from DIGGS data to the

standard KML CRS (longitude, latitude, elevation), as it is built upon the open source GeoTools

spatial engine that has been extended to support all of the DIGGS 3D Compound CRS

definitions. Linear referenced and planar referenced geometries are also supported in the

DIGGS KML Tool. A sample screen shot of a planar referenced TrenchWall polygon is shown in

Figure 7-2.

Figure 7-2: Representation of a Planar Referenced TrenchWall Polygon in the DIGGS KML Tool

DIGGS V2.0.a Documentation

 Page 124

7.2 DIGGS Excel Tool Installation

7.2.1 DIGGS Excel Tool Operating Environment

Microsoft Office MS Office version 2003 or later

7.2.1.1 Supported Versions of Office

Only Microsoft Office is supported at this time.

Other office products, such as OpenOffice, may not support all of the VBA code and have not

been tested.

Note that the spreadsheet uses embedded Visual Basic for Applications (VBA) to

implement the DIGGS to Excel conversion.

7.2.1.2 Enable Macros in Excel

Macros must be enabled in Excel otherwise the conversion functions will not work. This

requires the user to explicitly enable macros as they can pose a security threat from untrusted

sources.

To enable macros in Excel:

1. Open the DiggsToExcel_v7.xls file;

2. If macros are not already enabled, a Security Warning will be displayed:

DIGGS V2.0.a Documentation

 Page 125

3. Click on the [Options] button to open the Security Alert dialogue box:

4. In the Security Alert dialogue box, click on the option to enable the macro content:

DIGGS V2.0.a Documentation

 Page 126

5. Click [OK] to save the changes;

6. The Security Warning will no longer be displayed:

7. The DIGGS Excel Tool is now ready to be used.

DIGGS V2.0.a Documentation

 Page 127

7.3 Using the DIGGS Excel Tool

The DIGGS Excel Tool is used to convert DIGGS v2.0a data to an Excel spreadsheet.

! The tool is designed to support DIGGS v2.0a. Other versions of DIGGS may

not be converted properly.

7.3.1 Convert a DIGGS GML File to an Excel Spreadsheet

To use the DIGGS GML to Excel conversion tool:

1. Open the spreadsheet in Microsoft Excel (2003 or later);

2. Enable Macros in Excel (if not already done);

3. Click the [Load DIGGS File] button;

4. In the dialogue box, navigate to the folder containing the file to be converted;

5. Select the DIGGS file:

6. Click [Open] to convert the file or [Cancel] to abort the action.

Depending on the size and complexity of the selected file, it may take a few seconds to load.

DIGGS V2.0.a Documentation

 Page 128

It is recommended that the spreadsheet always be cleared before loading another

DIGGS file, otherwise data from the second file will be appended to the data from

the first file.

7.3.2 View the DIGGS Data in Excel

After a DIGGS GML instance has been loaded into Excel, the spreadsheet will open the tab
containing the root DIGGS element:

Figure 3: DIGGS File Overview Worksheet

DIGGS V2.0.a Documentation

 Page 129

Multiple additional tabs will have been added to the spreadsheet; each tab accesses a
worksheet containing one of the DIGGS feature/object types from the converted file:

Figure 4: Document Information Worksheet

DIGGS V2.0.a Documentation

 Page 130

Figure 5: Software Application Worksheet

DIGGS V2.0.a Documentation

 Page 131

Figure 6: Project Worksheet

DIGGS V2.0.a Documentation

 Page 132

Figure 7: Borehole Worksheet

DIGGS V2.0.a Documentation

 Page 133

Figure 8: Point Worksheet

DIGGS V2.0.a Documentation

 Page 134

Figure 9: LineString Worksheet

DIGGS V2.0.a Documentation

 Page 135

Figure 10: Linear Spatial Reference System Worksheet

DIGGS V2.0.a Documentation

 Page 136

Figure 11: Linear Referencing Method Worksheet

DIGGS V2.0.a Documentation

 Page 137

In some cases, the GML object is shown as a special table to better display complicated data
structures; one such example is the Log object.

The Log object typically has a large amount of data, and that data is related to other elements
within the object. In this case, a table is created for this specific object that helps the user
better visualize the data; the logData column headers are shown and the data for each
column is taken from other parts of the GML object and displayed below:

Figure 12: The LogData Worksheet

DIGGS V2.0.a Documentation

 Page 138

7.3.3 Navigating the DIGGS Data Worksheets

To manually navigate between the pages:

1. Use the Previous Page and Next Page links at the top of each worksheet to page

through the worksheets or to return to the Welcome Page;

2. Use the Excel page navigation tools in the bottom left corner of the spreadsheet;

3. Use the Ctrl + PageUp/PageDown keyboard shortcuts.

The various worksheets containing objects from the converted DIGGS GML file can also be
manually browsed by clicking on the tabs along the bottom of the spreadsheet:

DIGGS V2.0.a Documentation

 Page 139

Features/objects can be accessed directly by clicking on the links in the spreadsheet:

Clicking on a link redirects to the object identified by the link:

7.3.4 Save the Converted Excel Spreadsheet

To save the converted file:

1. From the [Office] button or the File menu, select Save As…;

2. In the dialog box, navigate to the folder where the converted file will be saved;

DIGGS V2.0.a Documentation

 Page 140

3. Enter an appropriate filename;

4. Click [Save] to save a copy of the file or [Cancel] to abort the action.

7.3.5 Clear the Excel Spreadsheet

Clear the loaded DIGGS instance by clicking the [Clear Spreadsheet] button in the Welcome
worksheet:

If the spreadsheet is not cleared before another file is loaded, the data from the second file will
be processed into the same worksheet, and it will be appended to the data from the first file:

DIGGS V2.0.a Documentation

 Page 141

7.3.6 Configuration Options

Various configuration options, for name mapping and color coding, are available in the
spreadsheet under the DIGGS Configuration tab. This supports better readability of the
converted data.

The configuration options allow for mapping the feature and property names in the application
schema to a more human-readable format.

The values listed in the worksheet present a mapping between the DIGGS GML schema and the
readable names presented in the Excel spreadsheet.

The colour code priority is:

1. specified colour

2. feature name

3. feature property

4. namespace

DIGGS V2.0.a Documentation

 Page 142

A namespace and colour code has been added for older data:

7.3.6.1 Changing Configuration Values

To change existing configuration values:

1. Right-click in the cell containing the Colour Code to be changed;

2. From the shortcut menu, select Format Cells…;

3. In the dialog box, click on the Fill tab;

4. Select one of the displayed colour swatches, or click on More Colors… and select a

colour using the Color Picker;

5. Click [OK] to accept the new colour or [Cancel] to abort the change.

DIGGS V2.0.a Documentation

 Page 143

7.3.6.2 Adding New Configuration Values

Additional values can be added in each section.

! If additional configuration values are added, DO NOT change:

 – the column heading names,

 – the order of the sections, or

 – the worksheet names.

Create entries for features or properties according to their fully-qualified name, and make sure

to include the namespace prefix.

To add new configuration values:

1. Click in the blank row immediately after the last configuration item of the type to be

added;

If the feature or property in the row above has a specified colour, this will be copied into

the Colour Code cell of the new row;

2. Enter the feature or property name and its readable name in the appropriate columns;

3. Change the Colour Code to the desired colour for the feature or property;

4. Save a new copy of the spreadsheet to make the new configuration a permanent part of

the DIGGS-to-Excel Converter.

7.4 DIGGS KML Tool Installation

7.4.1 DIGGS KML Tool Operating Environment

JDK Java JDK 6 or higher

DIGGS V2.0.a Documentation

 Page 144

7.4.1.1 Check for Existing Java Installation

To check whether Java has been installed, and to see which version is running, use the tool
provided on the Java website:

 http://www.java.com/en/download/installed.jsp

7.4.1.2 Install Java

If Java is not installed, or if an earlier version is running, download the appropriate package and
follow the instructions to install the latest Java JDK:

 http://www.oracle.com/technetwork/java/javase/downloads/index.html.

7.4.1.3 Set the JAVA_HOME Environment Variable

When the installation is complete, add or update your JAVA_HOME environment variable to the
JDK installation path:

1. In Windows, from the Start menu select Control Panel;

2. Open the System dialogue box;

3. Click on the tab to access the Advanced settings;

4. Click on the [Environment Variables] button at the bottom;

5. In the list of System Variables, create or update the JAVA_HOME system variable:

for example:

JAVA_HOME=C:\Program Files\Java\jdk1.6.0_10

7.4.1.4 Install the Application Files

To install the application files:

1. Download and save the package containing the application files; the application files are

packaged in the diggs-kml-2.0.zip file;

2. Create a folder to install the application files into, for example: C:\diggstools;

3. Extract the contents of the diggs-kml-2.0.zip file into the application folder just created.

http://www.java.com/en/download/installed.jsp
http://www.oracle.com/technetwork/java/javase/downloads/index.html

DIGGS V2.0.a Documentation

 Page 145

7.4.1.5 Manifest for the Application Package

The following is a list of the folders and files contained in the diggs-kml-2.0.zip file. This shows
the directory structure and contents that will be extracted to the application folder:

 Excel
 DiggsToExcel_v7.xls

 KML
 diggs-kml-2.0

 README.txt

 bin
 configuration.props
 launch.bat
 launch.sh

 conf
 configuration.properties
 crsAuthorityCodeEPSGMapping.xml
 DIGGS_KML_STYLING.xml
 DIGGS_WKT_CRS_DICTIONARY.txt
 xsl

 diggs-gml2kml.xsl
 srsConverter.xsl

 lib
 appframework-1.0.3.jar
 commons-pool-1.5.4.jar
 diggs-0.2.jar
 geoapi-2.3-M1.jar
 geoapi-pending-2.3-M1.jar
 gt-api-2.7-M4.jar
 gt-epsg-hsql-2.7-m4.jar
 gt-main-2.7-M4.jar

 gt-metadata-2.7-M4.jar
 gt-referencing3D-2.7-M4.jar
 gt-referencing-2.7-M4.jar
 hsqldb-1.8.0.7.jar
 jai_core.jar
 jsr-275-1.0-beta-2.jar
 junit-4.4.jar
 saxon9-9.1.0.7.jar
 saxon9-dom-9.1.0.7.jar
 swing-worker-1.1.jar
 vecmath-1.3.2.jar
 xercesImpl-2.9.0.jar
 xml-apis-2.9.0.jar

 sample
 testinstance.xml

DIGGS V2.0.a Documentation

 Page 146

7.5 Using the DIGGS KML Tool

The DIGGS KML Tool is used to convert DIGGS v2.0a data to KML that can be displayed on

Google Earth.

7.5.1 Open the DIGGS KML Tool

To start the DIGGS KML Tool:

1. Navigate to the ../bin folder inside the folder where the application was installed;

2. Run the launch.bat file (or launch.sh file in Linux) to start the application;

3. The application window will open with an empty Cmd window behind it:

Do not close the Cmd window while the DIGGS KML Tool is running. The Cmd

window runs in the background, and closing the Cmd window will close the

application.

DIGGS V2.0.a Documentation

 Page 147

7.5.2 Process a DIGGS File

To convert a file:

1. The fields in the application window are prepopulated with the default values in the

configuration.props file:

2. The configuration property fields specify:

a. the Configuration Folder where the configuration.props file is located;

b. the location and filename of the Transformation Script;

c. the location and filename of the Input XML File to be converted;

d. the location and filename of the Output KML File containing the data converted

from the input file;

3. To use different configuration values for any of the fields, use the [Browse…] button for

that field to navigate to and select the desired input or output, or enter the correct

information into the field manually;

4. Click the [Execute] button to convert the specified DIGGS file to KML;

DIGGS V2.0.a Documentation

 Page 148

5. The text area at the bottom of the window will display messages such as any errors

encountered as the file is being processed, the time taken to run the XSLT script, etc.;

6. When the processing is complete, a message will be displayed that the conversion is

done:

7. The converted KML file will be saved with the filename and to the location specified in

the Output KML File field;

8. Process another file [Clear] button.

DIGGS V2.0.a Documentation

 Page 149

7.5.3 View the KML File

To view the output file:

1. When the application window opens, the select the appropriate configuration directory,

XSLT, and input and output files, depending on what conversion is desired;

2. Click the [Execute] button;

3. Open the resulting KMZ file in Google Earth.

Figure 13: Converted KML displayed in Google Earth

7.5.4 Exit the Converter

To exit the converter and close both the application and the Cmd window:

1. Open the File menu then click on Exit; or

DIGGS V2.0.a Documentation

 Page 150

2. Press Ctrl+Q on the keyboard.

7.5.5 Configuration Options

There are a number of configuration options for the DIGGS KML Tool.

The DIGGS KML Tool will run without any changes being needed, but the options allow changes

to be made to the default settings, and for additional parameters to be specified.

7.5.5.1 Default User Properties

The default user properties are stored in the configuration.props file located in the ../bin folder.

The default properties are:

Property PropertyName Default Value

Configuration Directory configFolder ../conf

Transformation Script xsltFolder ../conf/xsl/diggs-gml2kml.xsl

Input XML File inputFile ../sample/testinstance.xml

Output KML File outputFile ../testinstance-output.kml

The DIGGS KML Tool remembers the last values used. The values in the

configuration fields are automatically updated in the configuration.props file on

exiting the application so any changes will be saved and used to populate the

fields the next time that the application is opened.

7.5.5.2 Additional Parameters

Additional configuration parameters can be found in the set of files in the ../conf folder:

 configuration.properties

Global application configuration properties (default CRS values, tile server, temporary

file management, etc.);

 crsAuthorityCodeEPSGMapping.xml

Maps custom CRS definitions to well-known text CRS definitions (CRS to WKT);

DIGGS V2.0.a Documentation

 Page 151

 DIGGS_KML_STYLING.xml

Styling rules that are applied to the conversion (KML styling rules);

 DIGGS_WKT_CRS_DICTIONARY.txt

List of well-known text (WKT) CRS definitions.

7.5.5.3 Changing the Configuration Values

If desired, the properties in the configuration files can be modified.

Note that when a configuration property is changed the application needs to be

restarted.

To modify the additional configuration properties:

1. Open the configuration file containing the value to be changed using an appropriate

authoring tool;

2. Locate the property to change;

3. Replace the existing value of the property with the desired new value;

4. Save and close the file;

5. Restart the application for the change to take effect.

! A backup should always be created before any files are modified.

Specific details about the configuration file and how to use it are in the following section.

7.5.6 Defining Styling for the Output KML

The DIGGS_KML_STYLING.xml file is used as an input to the transformation script that is

used to transform a DIGGS file to KML. For more information on the KML 2.2 styling

properties see http://code.google.com/apis/kml/documentation/kmlreference.html.

http://code.google.com/apis/kml/documentation/kmlreference.html

DIGGS V2.0.a Documentation

 Page 152

7.5.6.1 Opening the KML Styling File

The DIGGS_KML_STYLING.xml file is designed to be opened and modified using Microsoft

Excel.

To open the DIGGS_KML_STYLING.xml file:

1. In Excel, select Open from the File menu;

2. Navigate to the ..\conf folder in the directory where the DIGGS tools are installed

for example: C:\diggstools\KML\diggs-kml-0.2\conf

3. Click on the DIGGS_KML_STYLING.xml file and open it;

4. .If any changes are to be made to the file, immediately save a backup copy with a

different filename, then re-open the original file to make modifications.

The DIGGS_KML_STYLING.xml file will open as an Excel spreadsheet containing a number of

worksheets.

7.5.6.2 Saving Changes to the KML Styling File

After changes have been made, save the file with the original filename.

7.5.6.3 Worksheets in the KML Styling File

The DIGGS_KML_STYLING.xml file initially contains the following worksheets:

Worksheet Name Description

Welcome Worksheet containing information about the spreadsheet and

the rules for styling elements and properties.

Styling Worksheet for specifying the default styling properties for

DIGGS elements.

PrimaryCodeValue Customized worksheet for properties of the DIGGS

LithologyLayer element.

ColorCode Customized worksheet for properties of the DIGGS

ColorLayer element.

DIGGS V2.0.a Documentation

 Page 153

Worksheet Name Description

StratUnit Customized worksheet for properties of the DIGGS

StratigraphyLayer element.

BalloonDisplayName Worksheet for mapping XPath expressions to what will

actually be displayed in a balloon

Additional worksheets can be added to define customized styling for properties of specific

DIGGS elements.

The Welcome worksheet contains some notes about DIGGS GML, the Rules for how to use the
file to specify KML styling, a list of the properties that can be styled, and a list of the supported
namespaces:

DIGGS V2.0.a Documentation

 Page 154

7.5.6.4 KML Styling Rules

The following rules apply to all the worksheets in the DIGGS_KML_STYLING.xml file:

Rule Description

1 Styling rules for features are defined in the Styling worksheet.

2 Styling rules based on a feature property are defined in the 'Property Based Styling -

property mapping worksheet' column of the Styling worksheet.

3 Each row in the worksheet represents a unique DIGGS element.

4 Only color, scale, href, and the hotSpot KML properties are supported for Point

geometries.

5 Only color and width KML properties are supported for LineString geometries.

6 Only color and fill KML properties are supported for Polygon geometries.

7 Colors can be specified in one of the following ways:

 by filling a cell using Excel;

 by specifying a RGB color as a string prefixed by the number sign (e.g. '#7c006f');

 by specifying a valid BGR color as required by KML (e.g. '6f007c'), default KML

color will be used for empty cell (e.g. white).

8 Readable name for XPath can be specified in the BalloonDisplayName worksheet.

9 Values specified in a property specific mapping worksheet will override any values

specified at the feature level.

10 The following columns are used in the Style worksheet (see the tables in 7.5.6.5).

11 For point features, the origin of the coordinate system is in the lower left corner of the

icon.

DIGGS V2.0.a Documentation

 Page 155

7.5.6.5 Supported Namespaces

[Namespace Prefix] [Namespace URI]

gml http://www.opengis.net/gml/3.2

g3.3 http://www.forward_compatible_definitions.net/gml/3.3

xlink http://www.w3.org/1999/xlink

xsi http://www.w3.org/2001/XMLSchema-instance

witsml http://www.witsml.org/schemas/131

diggs http://schemas.diggsml.com/1.2a

diggs_geo http://schemas.diggsml.com/1.2a/geotechnical

diggs_env http://schemas.diggsml.com/1.2a/environmental

diggs_mon http://schemas.diggsml.com/1.2a/monitoring

diggs_pil http://schemas.diggsml.com/1.2a/piling

DIGGS V2.0.a Documentation

 Page 156

7.5.6.6 KML Properties for Styling

7.5.6.6.1 Point

Term Description

Point - color Color to be used for Point features.

See Rule #7 for specifying the color.

Point - alpha A hexadecimal opacity value to apply to the Point color (00 is fully

transparent and FF is fully opaque).

Default alpha color is FF.

Point - scale A double value used to resize the icon.

Default KML value is 1.0.

Point - href An HTTP address or a local file specification used to load an icon.

Point - hotSpot x Either the number of pixels, a fractional component of the icon, or a

pixel inset indicating the x component of a point on the icon.

Default value is 1.0.

Point - hotSpot y Either the number of pixels, a fractional component of the icon, or a

pixel inset indicating the y component of a point on the icon.

Default value is 1.0.

Point - hotSpot xunits Units in which the x value is specified. A value of fraction indicates

the x value is a fraction of the icon. A value of pixels indicates the x

value in pixels. A value of insetPixels indicates the indent from the

right edge of the icon.

Default value is fraction.

Point - hotSpot yunits Units in which the y value is specified. A value of fraction indicates

the y value is a fraction of the icon. A value of pixels indicates the y

value in pixels. A value of insetPixels indicates the indent from the

top edge of the icon.

Default value is fraction.

DIGGS V2.0.a Documentation

 Page 157

7.5.6.6.2 LineString

Term Description

LineString - color Color to be used for LineString features.

See Rule #7 for specifying the color.

LineString - alpha A hexadecimal opacity value to apply to the LineString color (00 is

fully transparent and FF is fully opaque).

Default alpha color is FF.

LineString - width Width of the line in pixels.

Default KML value is 1.0.

7.5.6.6.3 Polygon

Term Description

Polygon - color Color to be used for Polygon features.

See Rule #7 for specifying the color.

Polygon - alpha A hexadecimal opacity value to apply to the Polygon color (00 is fully

transparent and FF is fully opaque).

Default alpha color is FF.

Polygon - fill Boolean value (0 or 1) to specify whether to fill the polygon.

Default KML value is 1, specifying that the polygon will be filled.

DIGGS V2.0.a Documentation

 Page 158

7.5.6.6.4 Label

Term Description

Label - color Color to be used for labels.

See Rule #7 for specifying the color

Label - alpha A hexadecimal opacity value to apply to the label color (00 is fully

transparent and FF is fully opaque).

Default alpha color is FF

Label - scale A double value used to resize the label.

Default KML value is 1.0

7.5.6.6.5 Balloon

Term Description

Balloon Comma separated list of properties described as XPath to display in

the pop up balloon (by default gml:name and gml:description

will always be included). The namespace prefixes to use are declared

below.

XPath are relative to the Feature root (e.g. if a Borehole has a child

element name 'property1' defined in the namespace 'ns1', than the

'Balloon' column can contain the following XPath 'ns1:property1').

Balloon - xpath XPath of a property used in the pop up balloon.

Balloon - display name A meaningful name to display in the pop up balloon for the XPath of

a property.

Balloon - resolved

reference xpath

property

XPath of a property to use after resolving a feature referenced by an

xlink:href.

Values should only be specified for 'Balloon - xpath' ending with

xlink:href and reference a unique property.

DIGGS V2.0.a Documentation

 Page 159

7.5.6.6.6 Property Based Styling

Term Description

Property Based Styling -

property

The name of the property to use for specific styling.

Property Based Styling -

property mapping

worksheet

The name of a worksheet in this workbook to use to resolve the

specific property value.

7.5.6.7 Defining the Custom KML Styling

A number of DIGGS elements are included in the initial spreadsheet, but only a few of them

have any specific styling defined. Styling can be defined for any of the other DIGGS Elements

listed in the Styling worksheet, or new elements can be styled by adding their Element Name to

the list.

Any elements that do not have specific styling rules in the spreadsheet will be processed during

the conversion without custom styling.

Unstyled elements will use default styling, and there will be no content in the balloon.

If any property value is not explicitly defined for an element, the default value will be used. If a

property of an element has been defined, the property value will override the default value.

DIGGS V2.0.a Documentation

 Page 160

7.5.6.7.1 Styling

The Styling worksheet contains default styling properties for the element named in the first

column. Each column defines one style value. Columns are grouped together according to what

property is being styled.

7.5.6.7.1.1 Geometry Styling

Styling for Point, LineString, and Polygon geometries are in the first columns of the worksheet,
followed by styling for Label elements.

To style the geometry of an element:

1. Identify what type of geometry the feature has and fill in the desired values for the

geometry properties.

2. If a feature has multiple geometries (i.e. point and polygon), any or all of the geometries

may be styled.

To style the label (KML Placemark) for an element:

1. Enter the desired values for the Label properties.

2. Use the same rules for specifying the color and alpha properties of a Label as for the

color and alpha properties of a geometry.

3. To specify the size of the label – enter a value > 1 for the scale property.

DIGGS V2.0.a Documentation

 Page 161

Some notes on specifying geometry values:

 To specify the colour for the fill property of a Polygon – follow rule 7 for how to enter the

colour value.

 To specify the alpha value for transparency – use a hexadecimal value between 00 and

FF, for example: 00 is fully transparent, FF is fully opaque, and 7F is 50%.

 To specify whether or not to display the fill colour of a polygon – use a Boolean value of 0

or 1. The fill value must be 1 if the polygon is to be displayed in Google Earth.

7.5.6.7.1.2 Property Based Styling

The Styling worksheet allows global styling to be defined for an element. Specific properties of
an element can also be given specific styling.

If specific properties of an element are to be custom styled, the Property Based Styling
worksheet allows those specific properties to be mapped to a customized worksheet that will
contain the list of properties and their styling values.

To define styling for properties of an element:

1. specific styling for element properties can be defined by filling in the Property Based

Styling columns

2. select the property to use for styling

3. identify the worksheet

4. identify the name of the worksheet where the property styling is specified

DIGGS V2.0.a Documentation

 Page 162

5. create new worksheet by copying and renaming an existing one

6. property – path to property in the schema

7. properties can be at any level using an XPath expression to specify the property to use

7.5.6.7.1.3 Balloon Styling

The Balloon column contains a comma separated list of XPath expressions identifying each

property to display in the balloon associated with the element.

For each XPath property to be displayed in the balloon, use the BalloonDisplayName worksheet

(see section 7.5.6.7.5) to specify the display name to be used in the balloon.

DIGGS V2.0.a Documentation

 Page 163

7.5.6.7.2 PrimaryCodeValue

This is an element-specific worksheet that defines customized styling for properties of the
DIGGS LithologyLayer element:

7.5.6.7.3 ColorCode

This is an element-specific worksheet that defines customized styling for properties of the
DIGGS ColorLayer element:

DIGGS V2.0.a Documentation

 Page 164

7.5.6.7.4 StratUnit

This is an element-specific worksheet that defines customized styling for properties of the
DIGGS StratigraphyLayer element:

7.5.6.7.5 BalloonDisplayName

The information displayed in a balloon is defined by an XPath expression. The XPath expression
is mapped to the name to display in the Balloon.

The value of the XPath can reference the id of another element (that is, the XPath expression

ends in syntax @xlink:href). If this is the case, the balloon can be configured to either

display the id of the feature or resolve the id to display the element’s name. To resolve the id

and display the value of a property of the element, use the last column to identify the property

whose value should be displayed instead.

DIGGS V2.0.a Documentation

 Page 165

8 Future Enhancements

The emphasis on future enhancements should be placed on software tool support for DIGGS,

because it is software support that makes the wide adoption of any open standard possible. The

complexity of a rich information model such as the DIGGS model is meant to be hidden from

end users by software tools that take care of the ‘heavy lifting’. Software developers should

embrace the richness/complexity of the model (e.g. linear referencing, coverage encodings,

observations, etc) and the guidance provided in this document to create tools that exploit the

rich features of the model so that end users can benefit from the enhanced functionality

(without requiring deep technical knowledge of the encodings, which are meant to be processed

by machines). Initial suggestions for the types of software tool support include the following:

 DIGGS Validator – to enforce the validity of DIGGS data (beyond schema validation).

Likely to involve formal assertions (e.g. Schematron) to define and enforce general

DIGGS business rules.

 DIGGS Web authoring tool – to aid in the creation of DIGGS data and metadata.

 DIGGS Data and Map Server – to query, serve and visualize DIGGS data over the web.

 DIGGS Processing/Analysis applications – for technical and business analysis of

geotechnical and geoenvironmental data.

 DIGGS Identifier Registry – for discovery and management of globally unique identifiers

of DIGGS resources including of feature data, dictionaries (CRS and units), code lists,

symbols/styles, services and feature catalogues.

 DIGGS CRS and Units Registry – for discovery, management and machine readable

access to CRS components, transformations and units.

 DIGGS Data/Metadata Registry – for discovery of DIGGS services (e.g. data, analysis

and map services) and data resources (datasets, symbology, dictionaries, codelists) and

life cycle management of the services and data resources.

DIGGS V2.0.a Documentation

 Page 166

9 Bibliography

[1] Burggraf, David (Galdos Systems Inc.) March 2009. DIGGS Technical Report DIGGS

1.0a Schema Evaluation, pp. 137.

[2] Burggraf, David, Dan Ponti, Chris Bray, Loren Turner. April 2010. DIGGSML 1.1 Schema

Release Notes. Release of DIGGS V1.1, pp. 14.

[3] Cox, Simon, et. al. (2004). Geography Markup Language (GML) version 3.1, OGC

Recommendation Paper (Doc. No. OGC 03-105r1), 595p.

[4] Daigle, L., et. al. (2002). IETF RFC. Uniform Resource Names (URN) Namespace

Definition Mechanisms. http://tools.ietf.org/html/rfc3406. Link verified 2012-04-24.

[5] Hoit, Marc. DIGGS 1.0a Release Notes. Data Interchange for Geotechnical and

GeoEnvironmental Specialists (DIGGS), pp. 2.

[6] Mitten, Paul. (Compusult Ltd.) August 2009. DIGGS Technical Report DIGGS 1.0a

Schema Evaluation, pp. 62.

[7] Portele, Clemens, et. al. (2007). Geography Markup Language (GML 3.2). Joint

OGC/ISO Implementation Encoding Standard (OGC Doc. No. 07-036, ISO TC 211

19136), 437p.

[8] Portele, Clemens, et. al. (2012). Geography Markup Language (GML 3.3). OGC

Implementation Encoding Standard (OGC Doc. No. 10-129r1), 91p.

[9] Power, Chris and Roger Chandler. July 2008. DIGGSML Documentation. Introduction

to DIGGS, pp. 68.

[10] Power, Chris. July 2008. DIGGS Engineering Advisory Document. DIGGSML V1.0a

Data Dictionary, pp. 239.

[11] Turner, Loren L. March 2009. Proceedings of DIGGS Invitational Meeting, Orlando

Florida, March 25‐26, 2009. Report on Project Status and Development of a New

Roadmap, pp. 298.

[12] Turner, Loren L. August 2009. DIGGSML Blog Announcement. DIGGS Project Team

contracts with Galdos Systems and Compusult Ltd. to carry out review of DIGGS

version 1.0a, http://www.diggsml.com/diggs-project-team-contracts-galdos-systems-

and-compusult-ltd-carry-out-review-diggs-version-1-0a. Link verified 2012-03-05.

[13] Turner, Loren L. October 2009. DIGGS Summary Report. Synthesis of Findings and

Recommendations from Evaluation of DIGGS 1.0a Schema, pp. 8.

http://tools.ietf.org/html/rfc3406
http://www.diggsml.com/diggs-project-team-contracts-galdos-systems-and-compusult-ltd-carry-out-review-diggs-version-1-0a
http://www.diggsml.com/diggs-project-team-contracts-galdos-systems-and-compusult-ltd-carry-out-review-diggs-version-1-0a

DIGGS V2.0.a Documentation

 Page 167

Appendix A. DIGGS URN Registration RFC to IANA

The following document is an RFC submission for registration of the DIGGS URN Identification

Scheme to Internet Assigned Numbers Authority (IANA, http://www.iana.org/) following the

standard URN definition template (Appendix A, [4])

Introduction

DIGGS is a coalition of government agencies, universities and industry partners whose focus is

on the creation and maintenance of an international data transfer standard for transportation

related data. The coalition came into existence through coordination from the US Federal

Highway Administration sponsoring meetings and eventually forming the pooled fund study

project. The initial base schema consists of geotechnical data including Borehole, soil testing,

site information and more. The first SIG is extending the schema to include Geo-Environmental

testing.

Namespace ID

Assigned by IANA. The NID string is requested to be “diggs”

Registration Information

Registration Version Number: 1.0

Registration Date: 2010-08-09

Declared registrant of the namespace

Registering organization Name: Data Interchange for Geotechnical and Geo-environmental

Specialists (DIGGS)

Address: < Update this to reflect ASCE as the new DIGGSML custodian>

http://www.iana.org/

DIGGS V2.0.a Documentation

 Page 168

Designated contact person

Name: Loren Turner

Coordinates: loren_turner@dot.ca.gov

Declaration of syntactic structure

The Namespace Specific String (NSS) of all URNs that use the “diggs” NID will have the

following structure:

urn:diggs:{DIGGS_resource}:{ResourceSpecificString}

where the "DIGGS_resource" is a US-ASCII string that conforms to the URN syntax

requirements [RFC2141] and defines a specific class of resource type. Each resource type has a

specific labeling scheme that is covered by "ResourceSpecificString", which also conforms to the

naming requirements of [RFC2141].

DIGGS maintains a naming authority, the DIGGS Naming Authority (DIGGSNA), which will

manage the assignment of the "DIGGS_resource" and "ResourceSpecificString" fields for each

resource class.

Relevant ancillary documentation

The DIGGS Naming Authority (DIGGSNA) provides information on the registered resources

and the registrations for each. More information about DIGGSNA and the registration activities

and procedures to be followed are available at:

http://www.diggsml.com/

Identifier uniqueness considerations

The DIGGSNA will manage resources using the "diggs" NID and will be the authority for

managing the resources and subsequent strings associated. In the associated procedures,

DIGGSNA will ensure the uniqueness of the strings themselves or shall permit secondary

DIGGS V2.0.a Documentation

 Page 169

responsibility for management of well-defined sub-trees. DIGGS may permit use of

experimental type values that will not be registered. As a consequence, multiple users may end

up using the same value for separate uses. As experimental usage is only intended for testing

purposes, this should not be an issue.

Identifier persistence considerations

DIGGSNA will provide clear documentation of the registered uses of the "diggs" NID. This will

be structured such that each "DIGGS_resource" will have a separate description and registration

table. The registration tables and information will be published and maintained by the

DIGGSNA on the DIGGS web site.

Process of identifier assignment

DIGGSNA will use the DIGGS standards policies and procedures for discussion, approval and

registration of each type of resource that it maintains. Each such resource may have three types

of registration activities:

1) Registered values associated with DIGGS specs or services

2) Registration of values or sub-trees to other entities

3) Name models for use in experimental purposes

Process for identifier resolution

Not applicable – the namespace is not listed with a Resolution Discovery System.

Rules for Lexical Equivalence

No special considerations; the rules for lexical equivalence of [RFC2141] apply.

DIGGS V2.0.a Documentation

 Page 170

Conformance with URN Syntax

No special considerations.

Validation mechanism

None specified. URN assignment will be handled by procedures implemented in support of

DIGGSNA activities.

URN Scope

Global.

Example

The following example is representative of a URN that could be assigned

urn:diggs:def:fi:DIGGS:SCT23423

The URN above identifies the definition of a feature instance with code SCT23423 that is

maintained by the DIGGS authority.

Namespace Considerations

There is currently no available namespace that will allow the DIGGS to uniquely specify and

access resources, such as codelists and feature instances that are required by organizations

implementing DIGGS standards. There is also a need for other organizations, such as the

Association of Geotechnical and Geoenvironmental Specialists (AGS) to be able to access and

reference DIGGS specific resources.

DIGGS V2.0.a Documentation

 Page 171

Community Considerations

The current DIGGSML standard requires access to resources, such as schemas, codelists, and

coordinate reference system dictionaries. In order for the larger geotechnical and geo-

environmental communities to be able to effectively implement applications that access DIGGS

resources, a unique namespace is required. These resources are intended to be freely and openly

available as a set of community resources.

Security Considerations

There are no additional security considerations other than those normally associated with the

use and resolution of URNs in general.

Informative References

[1] Moats, R., "URN Syntax", RFC 2141, May 1997. <http://www.ietf.org/rfc/rfc2141.txt>

[2] Daigle, L. et al., "Uniform Resource Names (URN) Namespace Definition Mechanisms", RFC

3406, October 2002. <http://www.ietf.org/rfc/rfc3406.txt>

Full Copyright Statement

Copyright (C) The Internet Society (2006).

This document is subject to the rights, licenses and restrictions

contained in BCP 78, and except as set forth therein, the authors

retain all their rights.

This document and the information contained herein are provided on an

"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION

HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE

INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK

FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE

USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY

RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY

DIGGS V2.0.a Documentation

 Page 172

OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any

Intellectual Property Rights or other rights that might be claimed to

pertain to the implementation or use of the technology described in

this document or the extent to which any license under such rights

might or might not be available; nor does it represent that it has

made any independent effort to identify any such rights. Information

on the procedures with respect to rights in RFC documents can be

found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any

assurances of licenses to be made available, or the result of an

attempt made to obtain a general license or permission for the use of

such proprietary rights by implementers or users of this

specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any

copyrights, patents or patent applications, or other proprietary

rights that may cover technology that may be required to implement

this standard. Please address the information to the IETF at

ietf-ipr@ietf.org.

DIGGS V2.0.a Documentation

 Page 173

Appendix B. GML 3.2 Practices Adopted by DIGGS

B.1 Coverage Encodings

The data encoding pattern of the table entries (e.g. test results) is typically captured in GML

using a coverage encoding. The coverage model and corresponding best practices are provided

in this section.

A GML coverage is essentially a distribution of data readings/measurements, defined over a

geographic domain, which usually consists of a set of geometry elements. For example, the

geometry elements may be a set of polygons in a surface tessellation, a set of curves segments

along curve, a discrete set of points along a curve, or a rectified grid. A GML coverage can be

thought of as a function that maps a spatial or temporal domain to data values in the range. The

range of such a coverage function could take on any values, for example elevation, temperature,

pressure, rock type, or reflectance as shown in Figure 1.

Range f(X) f
x

Values

• elevation

• temperature

• pressure

• rock type

• reflectance

x

Surface
Tessellations

Segmented Curves

f

x

Discrete Point Sets

f

x

Domain X

Figure 1 Coverages are distribution functions defined on some domain.

There are three components that define a GML coverage – the domain, range, and coverage

function. These components contained by the three properties: domainSet, rangeSet and

DIGGS V2.0.a Documentation

 Page 174

coverageFunction, respectively. The GML spatial coverage model is represented by the Entity

Relationship (ER) diagram in Figure 2.

Coverage

Domain
Set

Coverage
Function

hasA

Geometry
Collection

isA

Range
Set

Composite
Value

isA

Figure 2. Entity Relationship (ER) View of a Coverage

Domain Set

In a GML instance, the value of the domainSet property will often be a GML geometry aggregate,

such as MultiPoint, MultiCurve, MultiPolygon, or an even spaced Grid such as RectifiedGrid.

O

v2

v1

x

y

DIGGS V2.0.a Documentation

 Page 175

Figure 3. A Two-Dimensional Rectified Grid with Offset Vectors v1 and v2

In Figure 3, the origin is denoted as O, and the offset vectors are v1 and v2. The origin and offset

vectors must all be of the same dimension – usually 1D, 2D or 3D. The GML RectifiedGrid has the

properties: limits, axisName, origin and offsetVector. The value of limits is a GridEnvelope, which has two

properties called low and high. The value of low is an integer list, for example [n1,n2], that

represents the “lower left” corner O+n1v1+n2v2 of the grid. Similarly, high represents the “upper

right” corner of the grid.

Range Set

The range set in GML can be encoded as an aggregate value, a data block or a binary file. An

aggregate value encoding is the most verbose; the binary encoding is the most efficient, and the

data block encoding lies somewhere in between. In DIGGS it was agreed that only the DataBlock

encoding would be appropriate. This section provides examples of the data block encoding with

temperature and pressure values. Note that the temperature and pressure values in these

examples are defined in a GML application schema.

Data Block

A gml:DataBlock consists of two properties, rangeParameters and tupleList, whose values describe the

range of a coverage. The value of rangeParameters is of gml:_Value type from valueObjects.xsd,

which describes the quantities in the tupleList, including the units of measure used.

The following example shows how temperature and pressure values can be encoded in a

DataBlock:

 <gml:rangeSet>
 <gml:DataBlock>
 <gml:rangeParameters>
 <gml:CompositeValue>
 <gml:valueComponents>
 <app:Temp uom="urn:ogc:def:uom:SI:1999:degreesC">template</app:Temp>
 <app:Pressure uom="urn:ogc:def:uom:SI:1999:kPa">template</app:Pressure>
 </gml:valueComponents>
 </gml:CompositeValue>
 </gml:rangeParameters>
 <gml:tupleList>0,101.1 24,101.2 17,101.3 19,101.4 ...</gml:tupleList>
 </gml:DataBlock>

DIGGS V2.0.a Documentation

 Page 176

 </gml:rangeSet>

Note that the aggregate value object CompositeValue is the target of rangeParameters in the instance

above, which has a valueComponents property. Temp and Pressure are value objects derived from

gml:MeasureType that are encapsulated by the valueComponents property tags. The tupleList property

contains a list of coordinate tuples, where the entries of the coordinate tuples provide the

quantities of the range parameters.

Coverage Function

The value of gml:coverageFunction is a choice between gml:MappingRule or gml:GridFunction. The

MappingRule is of type gml:StringOrRefType, which is a string or a URI reference to a mapping rule defined

elsewhere. The mapping rule by default is linear if not specified, where linear mapping assigns the first

geometry element (in document order) in the domain to the first value in the range, and so on.

Figure 4. Linear Mapping Rule for a MultiPoint Temperature Coverage

Grid Functions

The GridFunction is used instead of MappingRule for grid coverages and has two properties,

sequenceRule and StartPoint. The value of startPoint is an integer list that represents the first grid

post in the grid to be traversed, the default start value is the value of low in GridEnvelope. The value

DIGGS V2.0.a Documentation

 Page 177

of sequenceRule is one of the strings in the enumerated list sequence rules: Linear, Boustrophedonic,

Cantor-diagonal, Spiral, Morton, or Hilbert. The sequenceRule property also has an optional order

attribute whose value specifies one of the increment orders in the enumerated list: "+x+y", "+y+x",

"x-y", "-x-y", in the case where the grid is 2-dimensional. The increment order of "+x+y" means that

the grid points are traversed from lower to higher on the x-axis and from lower to higher on the

y-axis. For example, Figure 5 and Figure 6 both illustrate the linear sequence rule but with

different increment orders.

4
o
C

7

o
C

3

o
C

 1
o
C

5

o
C

 3
o
C

Range

Domain

(-1,1)
 (0,1)

(0,0)

(-1,-1)
 (0,-1)

(-1,0)

Figure 5. Linear Grid Function for a Grid Coverage with “+x+y” Increment Order

Note that in Figure 5, the starting point (-1,-1) is the same as the value of low in the

corresponding GridEnvelope. The increment order "+x-y" means the grid points are traversed from

lower to higher on the x-axis and from higher to lower on the y-axis as illustrated in Figure 6.

4
o
C 7

o
C 3

o
C 1

o
C 5

o
C 3

o
C

Range

Domain

(- 1,1) (0,1)

(0 ,0)

(- 1, - 1) (0 , - 1)

(- 1, 0)

Figure 6. Linear Grid Function for a Grid Coverage with “+x-y” Increment Order

As shown in Figure 6, the starting point (-1,1) is the not the same as the value of low in the

corresponding GridEnvelope. In this case the startPoint property is required as shown in the

following instance:

DIGGS V2.0.a Documentation

 Page 178

 <gml:domainSet>
 <gml:Grid dimension="2">
 <gml:limits>
 <gml:GridEnvelope>
 <gml:low>-1 -1</gml:low>
 <gml:high>0 1</gml:high>
 </gml:GridEnvelope>
 </gml:limits>
 <gml:axisName>x</gml:axisName>
 <gml:axisName>y</gml:axisName>
 </gml:Grid>
 </gml:domainSet>
 <rangeSet>...</rangeSet>
 <coverageFunction>
 <GridFunction>
 <sequenceRule order="+x-y">Linear</sequenceRule>
 <startPoint>0 1</startPoint>
 </GridFunction>
 </coverageFunction>

Note that if the startPoint was not specified, the default starting point would have been the value

of low, (-1,-1).

Encoding a Rectified Grid

The following example instance shows the entire temperature and pressure coverage,

TempPressure, with range data encoded as a DataBlock:

 <app:TempPressure>
 <gml:rectifiedGridDomain>
 <gml:RectifiedGrid dimension="2">
 <gml:limits>
 <gml:GridEnvelope>
 <gml:low>-1 -1</gml:low>
 <gml:high>2 2</gml:high>
 </gml:GridEnvelope>
 </gml:limits>
 <gml:axisName>u</gml:axisName>
 <gml:axisName>v</gml:axisName>
 <gml:origin>
 <gml:Point gml:id="O" srsName="urn:ogc:def:crs:EPSG::1234">
 <gml:coordinates>25,27</gml:coordinates>
 </gml:Point>
 </gml:origin>
 <gml:offsetVector>1, 0.2</gml:offsetVector>
 <gml:offsetVector>-0.2, 1</gml:offsetVector>

DIGGS V2.0.a Documentation

 Page 179

 </gml:RectifiedGrid>
 </gml:rectifiedGridDomain>
 <gml:rangeSet>
 <gml:DataBlock>
 <gml:rangeParameters>
 <gml:CompositeValue>
 <gml:valueComponents>
 <app:Temp uom="urn:ogc:def:uom:SI:1999:degreesC">template</app:Temp>
 <app:Pressure uom="urn:ogc:def:uom:SI:1999:kPa">template</app:Pressure>
 </gml:valueComponents>
 </gml:CompositeValue>
 </gml:rangeParameters>
 <gml:tupleList>3,101.2 5,101.3 7,101.4 11,101.5 13,101.6 17,101.7 19,101.7 23,101.8 29,101.9
 31,102.0 37,102.1 41,102.2 43,102.3 47,102.0 53,102.5 59,102.6</gml:tupleList>
 </gml:DataBlock>
 </gml:rangeSet>
 </app:TempPressure>

DIGGS V2.0.a Documentation

 Page 180

Appendix C. GML 3.3 Extensions Adopted by DIGGS

C.1 Simple MultiPoint Encoding

gmlce:SimpleMultiPoint implements, and provides a simplified encoding for, ISO 19107 GM_MultiPoint
(see ISO 19107:2003, 6.5.4). A gmlce:SimpleMultiPoint consists of a list of coordinates (DirectPositions).

<complexType name="SimpleMultiPointType">
 <complexContent>
 <extension base="gml:AbstractGeometricAggregateType">
 <sequence>
 <element ref="gml:posList"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<element name="SimpleMultiPoint" type="gmlce:SimpleMultiPointType"
substitutionGroup="gml:AbstractGeometricAggregate" />

<complexType name="MultiPointPropertyType">
 <choice minOccurs="0">
 <element ref="gml:MultiPoint"/>
 <element ref="gmlce:SimpleMultiPoint"/>
 </choice>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 <attributeGroup ref="gml:OwnershipAttributeGroup"/>
</complexType>

C.2 Linear Referencing

C.2.1 Linear Spatial Reference System

C.2.1.1 Introduction

A Linear Spatial Reference System enables the use of direct position (e.g. captured by gml:pos or

gml:posList) to define a linearly referenced location, Such a direct position in the spatial context of

a Linear Spatial Reference System implements the ISO 19148 LR_PositionExpression, with

restrictions The linear element and linear referencing method components of the position

expression are specified by a Linear SRS. Because gml:pos is only appropriate for geometries, the

DIGGS V2.0.a Documentation

 Page 181

linear element shall be limited to curves. Because gml:pos only allows values of type double,

relative Linear Referencing Methods would be precluded since the distance along would

otherwise require inclusion of a gmllr:referent. The gml:pos specifies the distance expression and is

limited to a single coordinate specifying the distanceAlong value.

C.2.1.2 LinearSRS

 <complexType name="LinearSRSType">
 <complexContent>
 <extension base="gml:IdentifiedObjectType">
 <sequence>
 <element ref="gmllr:linearElement"/>
 <element name="lrm" type="gmllr:LinearReferencingMethodPropertyType"/>
 <element name="defaultLength" type="gml:LengthType" minOccurs="0"/>
 <element name="startValue" type="gmllr:StartValueType" minOccurs="0"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="linearElement" type="gml:CurvePropertyType"/>

 <element name="LinearSRS" type="gmllr:LinearSRSType" substitutionGroup="gml:Definition"/>

The gmllr:LinearSRS element is an identified object that specifies a Linear Spatial Reference System

as a combination of a linear element and a Linear Referencing Method, the first two components

of a gmllr:PositionExpression.

The value of the element gmllr:linearElement is a curve in the substitution group gml:AbstractCurve.

The element gmllr:lrm specifies the linear referencing method of measurement.

The gmllr:LinearSRS implements the measure and startValue operations of the LR_ILinearElement

interface in ISO 19148 (clause 6.2.8) as the optional property elements defaultLength and startValue,

since the linearElement value is a curve possibly referenced from an existing dataset. The

operations: defaultLRM, translateToInstance, and translateToType are not implemented as properties by

gmllr:LinearSRS. The defaultLRM operation is not implemented because gmllr:LinearSRS has a mandatory

lrm property and the ‘translate’ operations are ignored because gmllr:LinearSRS is instantiated as an

XML/GML element,

The optional property element gmllr:totalLength specifies the overall length of the linear element

(curve). The gmllr:totalLength value can be used for all calculations requiring a total linear element

length, unless it is derived directly from the source curve geometry (e.g. at runtime) or retrieved

from source metadata (e.g captured in. gml:metaDataProperty).

gmllr:startValue provides the value at the start of the linear element for the specified Linear
Referencing Method. This is usually 0 (zero).

DIGGS V2.0.a Documentation

 Page 182

The gmllr:LinearSRS is identifiable by a gml:id and can be referenced as a Spatial Reference System

(SRS), by GML geometry elements using the srsName attribute. Each direct position (control

point) captured by the pos or posList properties of the GML geometry element taken together with

the gmllr:LinearSRS, implements the ISO 19148 LR_PositionExpression. For example:

 <gml:Point gml:id="p1" srsName="#LSRS123">
 <gml:pos>15.5</gml:pos>
 </gml:Point>

defines a Point geometry as a distance along (15.5) the gml:LineString linear element specified in

LSRS123, measured in accordance with the Linear Referencing Method defined by LRM001:

 <gmllr:LinearSRS gml:id="LSRS123">
 <gmllr:linearElement>
 <gml:LineString srsName="…" srsDimension="3" gml:id="LS_BH18">
 <gml:posList>407829 268621 23.93 407415 268600 8.43</gml:posList>
 </gml:LineString>
 </gmllr:linearElement>
 <gmllr:lrm>
 <gmllr:LinearReferencingMethod gml:id="LRM001">
 <gmllr:name>chainage</gmllr:name>
 <!--chainage = measurement in metres -->
 <gmllr:type>absolute</gmllr:type>
 <!--absolute = measure from start of linear element -->
 <gmllr:units uom="m"/>
 </gmllr:LinearReferencingMethod>
 </gmllr:lrm>
 </gmllr:LinearSRS>

Additional examples are provided in Section C.3.3 (Vector Offset Linear Spatial Reference

System).

C.2.1.3 LinearSRSPropertyType

 <complexType name="LinearSRSPropertyType">
 <sequence minOccurs="0">
 <element ref="gmllr:LinearSRS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

C.3 Linear Referencing Offset Vectors

C.3.1 Target namespace

All schema components specified in this subclause are in the target namespace:

DIGGS V2.0.a Documentation

 Page 183

http://www.opengis.net/gml/3.3/lrov

C.3.2 Introduction

Linear Referencing with Offset Vectors includes the specification of linearly referenced locations

which can have vector offsets.

C.3.3 Vector Offset Linear Spatial Reference System

C.3.3.1 Introduction

A Vector Offset Linear Spatial Reference System enables the use of gml:pos to define a linearly

referenced location which may include offset vectors, The linear element and Linear

Referencing Method components of the position expression are specified by a Vector Offset

Linear SRS. Because gml:pos is only appropriate for geometries, the linear element shall be

limited to curves. Because gml:pos only allows values of type double, relative Linear Referencing

Methods would be precluded since the distance along would otherwise require inclusion of a

gmllr:referent. The gml:pos element specifies the distance expression and its coordinates specify the

mandatory distanceAlong and optional vector offset values.

C.3.3.2 VectorOffsetLinearSRS

 <complexType name="VectorOffsetLinearSRSType">
 <complexContent>
 <extension base="gmllr:LinearSRSType">
 <sequence>
 <element name="offsetVector" type="gmllrov:VectorType" maxOccurs="3"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

 <element name="VectorOffsetLinearSRS" type="gmllrov:VectorOffsetLinearSRSType"
 substitutionGroup="gmllr:LinearSRS"/>

 <complexType name="VectorType">
 <complexContent>
 <extension base="gml:VectorType">
 <attribute name="offsetUom" type="gml:UomIdentifier"/>
 </extension>
 </complexContent>
 </complexType>

The gmllrov:VectorOffsetLinearSRS element is an identified object that specifies a Multidimensional

Spatial Reference System by extending gmllrov:LinearSRSType with one or more offset vectors to

define a reference frame relative to the linear element (examples are provided below).

DIGGS V2.0.a Documentation

 Page 184

The element gmllrov:offsetVector specifies an offset vector direction (vector length/magnitude is

ignored), which is the direction that the corresponding offset distance will be measured. The

attribute srsName, inherited from gml:VectorType, specifies the offset vector Coordinate Reference

System.

The gmllrov:VectorType extends gml:VectorType with an optional attribute gmllrov:offsetUom, which

specifies the units of measure of the offset distance. It is of type gml:UomIdentifier If the

gmllrov:offsetUom attribute is not provided, the uom value defaults to the gmllr:units value of the Linear

Referencing Method, otherwise gmllrov:offsetUom possesses the overriding value.

The gmllrov:VectorOffsetLinearSRS can be referenced as a Spatial Reference System (SRS), by GML

geometry elements using the srsName attribute. Each direct position (control point) captured by

the pos or posList properties of the GML geometry element taken together with the offset vectors

and gmllrov:VectorOffsetLinearSRS, implements the ISO 19148 LR_PositionExpression, with

restrictions. Vector offsets are accommodated in gml:pos or gml:posList expressions with the

following assumptions:

1) the Linear Referencing Method type cannot be “relative”

2) the linear element must be of type “curve”

3) the first double value in gml:pos (or gml:posList tuple) is the distance along the linear element

4) subsequent double values in gml:pos (or gml:posList tuple), if present, correspond to the
component distance along the offset vectors in document order as specified in the
gmllrov:VectorOffsetLinearSRSType.

EXAMPLE 1 Single Offset Vector

A single offset vector can be used to describe the positions P1 to P11 relative to a linear element in

the direction of the offset vector v as illustrated in Error! Reference source not found..

DIGGS V2.0.a Documentation

 Page 185

Figure 1 – Single offset vector

Sample gml:Point encodings of the positions P1 to P11 are shown as follows, where the first ordinate

in each gml:pos element corresponds to distance along the linear element L1 and the second

ordinate in each gml:pos element corresponds to the distance (in units specified by offsetUom) in the

direction of the offset vector v.

 <gml:Point gml:id="P1" srsDimension="2" srsName="#volsrs001">
 <gml:pos>0 1.7</gml:pos>
 </gml:Point>
 <gml:Point gml:id="P2" srsDimension="2" srsName="#volsrs001">
 <gml:pos>1 1</gml:pos>
 </gml:Point>
 <gml:Point gml:id="P3" srsDimension="2" srsName="#volsrs001">
 <gml:pos>2 0.6</gml:pos>
 </gml:Point>
 <gml:Point gml:id="P4" srsDimension="2" srsName="#volsrs001">
 <gml:pos>3 -0.3</gml:pos>
 </gml:Point>
 <gml:Point gml:id="P5" srsDimension="2" srsName="#volsrs001">
 <gml:pos>4 -0.3</gml:pos>
 </gml:Point>
 <gml:Point gml:id="P6" srsDimension="2" srsName="#volsrs001">
 <gml:pos>5 -0.1</gml:pos>
 </gml:Point>

DIGGS V2.0.a Documentation

 Page 186

 <gml:Point gml:id="P7" srsDimension="2" srsName="#volsrs001">
 <gml:pos>6 0.7</gml:pos>
 </gml:Point>
 <gml:Point gml:id="P8" srsDimension="2" srsName="#volsrs001">
 <gml:pos>7 1.5</gml:pos>
 </gml:Point>
 <gml:Point gml:id="P9" srsDimension="2" srsName="#volsrs001">
 <gml:pos>8 1.7</gml:pos>
 </gml:Point>
 <gml:Point gml:id="P10" srsDimension="2" srsName="#volsrs001">
 <gml:pos>9 1.8</gml:pos>
 </gml:Point>
 <gml:Point gml:id="P11" srsDimension="2" srsName="#volsrs001">
 <gml:pos>10 1.9</gml:pos>
 </gml:Point>

 <gmllrov:VectorOffsetLinearSRS gml:id="volsrs001" xmlns:gmllr="http://www.opengis.net/gml/3.3/lr"
 xmlns:gmllrov="http://www.opengis.net/gml/3.3/lrov" xmlns:gml="http://www.opengis.net/gml/3.2">
 <gml:identifier codeSpace="...">...</gml:identifier>
 <gmllr:linearElement xlink:href="#L1" xlink:title="LinearElement"/>
 <gmllr:lrm xlink:href="#lrm0001" xlink:title="LinearReferencingMethod"/>
 <gmllrov:offsetVector srsName="http://www.opengis.net/def/crs/EPSG/0/7405" offsetUom="m">0 1
 0</gmllrov:offsetVector>
 </gmllrov:VectorOffsetLinearSRS>

 <gmllr:LinearReferencingMethod gml:id="lrm0001" xmlns:gmllr="http://www.opengis.net/gml/3.3/lr">
 <gmllr:name>chainage</gmllr:name>
 <gmllr:type>absolute</gmllr:type>
 <gmllr:units>m</gmllr:units>
 </gmllr:LinearReferencingMethod>

EXAMPLE 2 Two Offset Vectors

A basis of two offset vectors v1 and v2 can be used to describe the positions S1 to S11 relative to a

linear element L2 in the offset reference frame as illustrated in Error! Reference source not

found.. Sample gml:Point encodings of the positions S1 to S11 are shown adjacent to the diagram

below, where the first ordinate in each gml:pos element corresponds to distance along the linear

element L2, the second ordinate in each gml:pos element corresponds to the component distance

along the direction of offset vector v1 and the third ordinate in each gml:pos element

corresponds to the component distance along the direction of the offset vector v2.

DIGGS V2.0.a Documentation

 Page 187

Figure 2 – Two offset vectors

 <gml:Point gml:id="S1" srsDimension="3" srsName="#volsrs002">
 <gml:pos>0 1 0</gml:pos>
 </gml:Point>
 <gml:Point gml:id="S2" srsDimension="3" srsName="#volsrs002">
 <gml:pos>1 0 1</gml:pos>
 </gml:Point>
 <gml:Point gml:id="S3" srsDimension="3" srsName="#volsrs002">
 <gml:pos>2 -1 0</gml:pos>
 </gml:Point>
 <gml:Point gml:id="S4" srsDimension="3" srsName="#volsrs002">
 <gml:pos>3 0 -1</gml:pos>
 </gml:Point>
 <gml:Point gml:id="S5" srsDimension="3" srsName="#volsrs002">
 <gml:pos>4 1 0</gml:pos>
 </gml:Point>
 <gml:Point gml:id="S6" srsDimension="3" srsName="#volsrs002">
 <gml:pos>5 0 1</gml:pos>
 </gml:Point>
 <gml:Point gml:id="S7" srsDimension="3" srsName="#volsrs002">
 <gml:pos>6 -1 0</gml:pos>
 </gml:Point>
 <gml:Point gml:id="S8" srsDimension="3" srsName="#volsrs002">
 <gml:pos>7 0 -1</gml:pos>
 </gml:Point>
 <gml:Point gml:id="S9" srsDimension="3" srsName="#volsrs002">
 <gml:pos>8 1 0</gml:pos>
 </gml:Point>
 <gml:Point gml:id="S10" srsDimension="3" srsName="#volsrs002">
 <gml:pos>9 0 1</gml:pos>

DIGGS V2.0.a Documentation

 Page 188

 </gml:Point>
 <gml:Point gml:id="S11" srsDimension="3" srsName="#volsrs002">
 <gml:pos>9.3 -0.45 0.89</gml:pos>
 </gml:Point>

 <gmllrov:VectorOffsetLinearSRS gml:id="volsrs002">
 <gml:identifier codeSpace="…">…</gml:identifier>
 <gmllr:linearElement xlink:href="#L2" xlink:title="Linear curve element"/>
 <gmllr:lrm xlink:href="#lrm0001" xlink:title="LinearReferencingMethod"/>
 <gmllrov:offsetVector srsName="http://www.opengis.net/def/crs/EPSG/0/7405" offsetUom="m">0 1
 0</gmllrov:offsetVector>
 <gmllrov:offsetVector srsName="http://www.opengis.net/def/crs/EPSG/0/7405" offsetUom="m">0 0
 1</gmllrov:offsetVector>
 </gmllrov:VectorOffsetLinearSRS>

C.3.3.3 VectorOffsetLinearSRSPropertyType

 <complexType name="VectorOffsetLinearSRSPropertyType">
 <sequence minOccurs="0">
 <element ref="gmllrov:VectorOffsetLinearSRS"/>
 </sequence>
 <attributeGroup ref="gml:AssociationAttributeGroup"/>
 </complexType>

DIGGS V2.0.a Documentation

 Page 189

Appendix D. DIGGS Change Release Log

D.1 Version 1.1

D.1.1 Change Log 2010-05-18T14:30

Author: David Burggraf

Date/Time: May-18-2010 2:30 PM

Schema Version: 1.1

Topic: DIGGS brought to GML Conformance

Description:

The list of issues identified in the DIGGS 1.0a Schema Evaluation reports [1], [6], and [12] were

fixed as agreed including:

 GML “Object‐Property” Patterning

 Migration from GML 3.1 to GML 3.2

 Modified inheritance hierarchy of Objects

 Created GML 3.2 Profile

 Enabled relative referencing in the schemas

 Modified and validated the 20 example instances.

 Executed GML SDK to check for GML conformance violations – passed.

 Measured the reduction in complexity – reduction in schema size, number of schemas,

includes/imports, schema load time, auto instance generation, etc.

 Verified that instances can open in XML editors including Altova, Oxygen, and Stylus

with no need for special configuration.

D.2 Version 1.2a

D.2.1 Change Log 2010-05-20T12:25

Author: David Burggraf

Date/Time: May-20-2010 12:25 PM

Schema Version: 1.2a

DIGGS V2.0.a Documentation

 Page 190

Topic: Code lists

Description:

o Identified all elements (except in Piling.xsd) that have codespace attributes

o Identified elements (except in Piling.xsd) that use enumerated lists. TBD if these are to be code

lists instead (Loren to work with DIGGS core SIG on this)

o Generated Excel spreadsheet summary of candidate code lists.

D.3 Version 1.2.1

D.3.1 Change Log 2010-06-10

Author: Daniel Ponti

Date/Time: Jun-10-2010 2:30 PM

Schema Version: 1.2.1

Topic: Feature base classes formalized

Description:

In this version, we formalized the 9 feature base classes (see Figure below) so that all features in

Kernel.xsd, Geotechnical.xsd, and Environmental.xsd fall within these classes and derive from

the appropriate base types.

DIGGS V2.0.a Documentation

 Page 191

Figure 1 – There are 9 top-level feature classes in DIGGS v1.2a.

The nine feature classes are:

 Projects - business activities that collect, compile, and process information from

locations [Process]

 Locations - real world places and constructions from which observations are made,

samples are collected, or tests are run. [Entity]

 Sampling Activities - the process of sample creation or collection [Process]

 Samples - earth material, fluids, or gases collected or created for observation and testing

[Entity]

 Layer Systems - ordered interval observations or interpretations of earth materials,

properties or features at a location [Entity]

 Laboratory Tests - analyses performed on samples collected from locations, or created

via a sampling activity [Process]

 In-Situ Tests - analyses or observations at a location [Process]

 Sensors (I'd suggest a nomenclature change to Installations or Monitoring Installations) -

equipment or devices installed at locations that collect repeated measurements or

observations [Entity]

 Groups - collections of projects, locations, samples or groups of these, for the purpose of

providing meaningful context to observations and measurements.

DIGGS V2.0.a Documentation

 Page 192

The following Figure shows an illustration of how the feature classes are associated in DIGGS.

Figure 2 – Feature class associations in DIGGS

All features in DIGGS carry a mandatory id (gml:id), required by GML and used for referencing

and linking with other features. All features also carry an identifier (gml:identifier), required by

DIGGS, which is a globally unique key for the feature, and uses a URN pattern. Optional

properties of all feature classes include status (needs clearer definition), description, and

associated file, role, and remarks metadata objects.

Projects, Locations, Samples, Layer Systems, Sensors, and Groups are "named" features. In

addition to the properties above, they also carry a mandatory name property.

All objects (complex properties of features) must carry a mandatory id; optional properties of all

objects are description, status, and the remarks metadata objects. Some metadata objects are

named (eg. equipment and specifications), and carry a mandatory name property.

Metadata objects currently defined are:

 Document Information - information about the specific XML instance document

 Associated Files - references to non-XML documents or records outside of the XML

instance

 Business Associates - persons and institutions

DIGGS V2.0.a Documentation

 Page 193

 Equipment - well, you know, equipment :-)

 Specifications - test specifications or procedures

D.4 Version 1.2.2

D.4.1 Change Log 2010-07-01T13:30

Author: Dan Ponti

Date/Time: July-01-2010 1:30 PM

Schema Version: 1.2.2

Topic: Further feature class restructuring

Description:

• gml:identifier is now optional

• Project was moved to top hierarchy.

– Retained the structure originally proposed where all features are at the root level.

– Made the Project feature mandatory in all DIGGS instances.

– Restricted Project feature so that only one Project in permitted in a DIGGS file.

– All features in the DIGGS file now associated to the single project (via href).

• Added Location Features - In v 1.1, the Hole feature was somewhat generic, it was set up

to handle properties of a geotechnical borehole, but could be other types that were of

similar geometry but not really boreholes (eg. a transect or trial pit). In 1.2a, there are

now specific Location features that derive from either AbstractPointLocation,

AbstractLinearLocation, or AbstractPlanarLocation location feature types, each of which

have properties specific to that type of feature. This way, we can model more types of

features in a straightforward fashion in the future, such as embankments, tunnels, roads,

etc. Diggs 1.2a now has defined in it the following location features:

– Borehole - very similar to Hole in v 1.1, but modified to handle 1.2 constructs.

(Linear Location)

– Trial Pit - a shallow excavation - legacy to handle current AGS trial pit constructs.

(Linear Location)

– Trench Wall - designed to supplant Trial Pit in the future. A wall of a trench or pit

represented by a vertical planar surface. (Planar Location); in 1.2a this is only

partially built

– Station - a point on the earth's surface (Point Location)

DIGGS V2.0.a Documentation

 Page 194

D.5 Version 1.2.3a

D.5.1 Change Log 2010-07-06T11:31

Author: Daniel Ponti

Date/Time: July-06-2012 11:31 AM

Schema Version: 1.2.3a

Topic: Layer Systems and Location Features

Description:

Layer Systems

Layer systems became more specific to make data mapping to DIGGS easier and to provide

more specificity in coding. The Layer system object now carries mandatory properties that

indicate which type of layer system it is, and that layer system's subtype. Layer system types

come from an enumerated list hard-coded into the schema; sub-types are code types that would

be defined in referenced code lists. The types of layer systems (enumerations) are:

 Color – describes the color of materials encountered

 Component – describe details of earth materials encountered

 Discontinuity – describes fractures and joints and their spacing

 Lithology – describe the earth materials encountered

 Orientation – describes the geometry of vectors or planar surfaces encountered at a

location, such as bedding, joints, cross-beds, etc.

 Other – describes a layer system of unknown type, using name-value pairs.

 Property – describes a layer system where the results are simple text or numeric values -

usually interpreted as a result of some lab or in-situ test (eg. porosity).

 Stratigraphy – describes ordered bodies of rock or soil, such as formations,

biostratigraphic units or aquifers.

The layer objects that are properties of layer systems are defined separately for each type of layer

system. For example, a layer system of type lithology has a layer of type LithologyLayerType,

which has properties unique to lithology layer systems. Note - Discontinuity layer systems

replace the discontinuity and fracture spacing properties of the Hole feature in v 1.1.

Positions of Sampling Activities, Layers, Tests and Sensors at Locations
Diggs v 1.1 uses point properties of top and base to describe the positions of observations (eg.

sampling activities layers, tests, sensors) at locations. This position type is suitable only for holes

and hole type features where the positions are described along a vertical (or nearly so) linear

reference. This is constraining and does not allow for easy reuse of these observation features.

In 1.2a, all of these observations carry a position property type that contains a LocationPosition

object that is defined by the specific type of Location feature where the observation occurs. So,

position properties for a borehole feature are contained within a BoreholePosition position

object. A BoreholePosition object consists of a choice of two properties:

DIGGS V2.0.a Documentation

 Page 195

 measuredDepth (a gml:PointProperty in 1D)

 depthInterval (gml:CurveProperty in 1D).

A TrenchWallPosition object consists of a choice between a pointPosition (2D Point property),

linearElementPosition (2D Curve property), of a surfacePosition (2D surface property).

For example, a layer described in a hole would contain a BoreHolePosition object in its position

property - typically with a depthInterval property that defines the top and base of the layer. If the

layer were associated with a trench wall, its position property would contain a

TrenchWallPosition object to define its position on a trench wall in a 2D reference system; this

would most likely be a surface property (polygon) that defines the exposure of the layer in the

trench wall. The layer feature's other properties remain exactly the same; there is no need to

redefine a layer for different location features.

D.6 Version 1.2.3.b

D.6.1 Change Log 2010-07-05T12:59

Author: David Burggraf

Date/Time: July-05-10 12:59 PM

Schema Version: 1.2.3b

Topic: MultiPoint Coverage Implementation

Description:

Created the schema constructs for MultiPointCoverage and example instance – excerpt as

follows.

 <diggs_geo:coverageData>
 <gml:MultiPointCoverage gml:id="MPC001">
 <gml:domainSet>
 <g3.3:MultiPoint gml:id="MP001">
 <g3.3:position>0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.110 0.120
 0.130 0.140 0.150 0.160 0.170 0.180 0.190 0.200 0.210 0.220 0.230 0.240 0.250 0.260
 0.270 0.280 0.290 0.300 0.310 0.320 0.330 0.340 0.350 0.360 0.370 0.380 0.390 0.400
 <!-- snip-->
 5.310 5.320 5.330 5.340 5.350 5.360 5.370 5.380 5.390 5.400 5.410 5.420 5.430 5.440
 </g3.3:position>
 </g3.3:MultiPoint>
 </gml:domainSet>
 <gml:rangeSet>
 <gml:DataBlock>
 <gml:rangeParameters>

DIGGS V2.0.a Documentation

 Page 196

 <gml:CompositeValue gml:id="CV001">
 <gml:valueComponents>
 <diggs:Column gml:id="Dd1e266" index="1">
 <dataType>xs:double</dataType>
 <meaning>Measure</meaning>
 <uom>MN/m2</uom>
 <source xlink:href="#DIGGS-CPT-CONE-1-RES"/>
 </diggs:Column>
 <diggs:Column gml:id="Dd1e283" index="2">
 <dataType>xs:double</dataType>
 <meaning>Measure</meaning>
 <uom>uS/cm</uom>
 <source xlink:href="#DIGGS-CPT-CONE-1-COND"/>
 </diggs:Column>
 <diggs:Column gml:id="Dd1e300" index="3">
 <dataType>xs:double</dataType>
 <meaning>Measure</meaning>
 <uom>kN/m2</uom>
 <source xlink:href="#DIGGS-CPT-CONE-1-LSFR"/>
 </diggs:Column>
 <diggs:Column gml:id="Dd1e317" index="4">
 <dataType>xs:double</dataType>
 <meaning>Measure</meaning>
 <uom>kN/m2</uom>
 <source xlink:href="#DIGGS-CPT-CONE-1-PWP"/>
 </diggs:Column>
 </gml:valueComponents>
 </gml:CompositeValue>
 </gml:rangeParameters>
 <gml:tupleList ts=" " cs="," decimal="."> 0.1300,0.40,0.0000,0.0013
 0.2400,0.40,0.1.0a,0.0078 0.5500,0.40,0.0040,0.0126 0.6800,0.40,0.0070,-0.0017
 0.7800,0.30,0.0120,-0.0121 0.9000,0.30,0.0150,-0.0161 0.9600,0.40,0.0200,0.0191
 <!-- snip-->
 40.5400,0.40,9999.0000,9999.0000 </gml:tupleList>
 </gml:DataBlock>
 </gml:rangeSet>
 </gml:MultiPointCoverage>
 </diggs_geo:coverageData>

D.7 Version 1.2.4.a

D.7.1 Change Log 2010-07-07T11:20

Author: Daniel Ponti

Date/Time: Wednesday, July 07, 2010 11:20 PM

DIGGS V2.0.a Documentation

 Page 197

Schema Version: V1.2.4.a

Topic: Major Schema Update Migrating V1.2.3a to V1.2.4a

Description: The changes reflect modifications based on vendor comments.

Changes to Kernel.xsd:

1. Added projectRef element to schema - of FeatureReference type, designed to hold a single

reference to the project that a feature is associated with for the purpose of this instance

document.

2. Added the projectRef element as a mandatory property of the following types

 a) AbstractTestType

 b) AbstractLocationType

 c) UndefinedLocationType

 d) SamplingActivityType

 e) AbstractGroupType - not sure this is correct, so made projectRef optional. Does a group

need a project reference? What about a group of projects?

 f) LayerSystemType

 g) SampleType

3. Made the associatedLocationRef property of SamplingActivity optional. Now that the

projectRef is mandatory, there is no need to reference a dummy location to derive the project for

a sampling activity that does not occur at a location.

4. Deprecated UndefinedLocation and UndefinedLocationType (did not delete but commented

out of schema). No longer needed now that SamplingActivity carries a mandatory projectRef

property

5. Added back ProjectGroup element and type(s) from 1.2.1 to allow for grouping projects

6. Replaced ProjectType with ProjectType from v. 1.2.1.a

7. Moved locations, laboratoryTesting, insituTesting, samplingActivities, samples, layerSystems,

monitoringInstallations, and groups properties from ProjectType to DiggsType.

8. Added testPosition property of type LocationPositionPropertyType to

AbstractInsituTestType.

9. Added inSituTestRef and laboratoryTestRef properties to samplingActivity to allow an activity

to reference a test that produces a sample.

10. Added samplingActivityRef properties to AbstractInsituTestType and

AbstractLaboratoryTestType to allow a test to reference a sampling activity if in fact a sample is

produced from the test.

DIGGS V2.0.a Documentation

 Page 198

11. Added optional sensorRef property to AbstractInsituTestType to enable a test to be

conducted at a MonitoringLoctaion.

12. Added nullDataType for values assigned to null and a reason attribute

13. Created AllUnitsType - union of all witsml units.

14. Created CurveInfo element and associated types to handle column definitions of depth-

indexed tabular data (eg. CPT and geophysics).

15. Added substituted choice elements for metadatareferencetype properties for equipment,

specifications, and business associates, so that users could just substitute a string value instead

of having to explicitly reference one of these metadata features

16. Replaced gml3.2Profile_diggs.xsd and gml3.3Profile_diggs.xsd files with the same schema

files from the 1.2.3b revision of Burgraff dated 7/5/10.

17. Removed type attribute from ConstituentType (which was an enumerated list) and added a

mandatory constituentType property to ConstituentType that is of type gml:CodeType designed

to read from a code list instead

18. Changed the type of the following properties from diggs:ReferenceType to

gml:ReferenceType

 a. source property of ColumnType

19. Deleted global diggs:ReferenceType. No longer needed.

20. Added InsituTest, InsituTestType, InsituTestPropertyType, AbstractInsituTestParameters,

AbstractInsituTestParametersType, AbstractInsituTestResults, AbstractInsituTestResultsType

elements and complex types to support standardization of test features.

21. Added LaboratoryTest, LaboratoryTestType, LaboratoryTestPropertyType,

AbstractLaboratoryTestParameters, AbstractLaboratoryTestParametersType,

AbstractLaboratoryTestResults, AbstractLaboratoryTestResultsType elements and complex

types to support standardization of test features.

22. Added parameters and results properties to AbstractInSituTestType and

AbstractLaboratoryTestType

23. Added mandatory testType property to AbstractTestType.

24. Added the following elements and types to restrict GML coverage and morph this into types

for use with CPT and geophysical logs.

 a. Log, LogType, LogPropertyType (derives from gml:AbstractCoverageType)

DIGGS V2.0.a Documentation

 Page 199

 b. logPositions, LogPositionsType (substitutes for gml:domainSet

 c. logData, LogDataType (substitutes for gml:rangeSet)

 d. DataBlock, DataBlockType (substitutes for gml:DataBlock)

 e. curveValues of type gml:CoordinatesType (substitutes for gml:tupleList)

 f. columns, ColumnsType (substitutes for gml:RangeParameters)

 g. ColumnInfo, ColumnInfoType (substitutes for gml:ValueArray)

 h. curves, CurvesType derives from gml:ValueArrayPropertyType and has (substitutes for

gml:valueComponents)

 i. Curve, CurveType, CurvePropertyType (substitutes for gml:AbstractValue); contains

curve/column parameters

 25. Changed substitution group for Column element back to diggs:AbstractObject from

gml:AbstractValue so this won't substitute for the log type.

Changes to Environmental.xsd

1. Modified AnalysisType to derive from AbstractLaboratoryTestType instead of

AbstractFeatureType

2. Added readingMethodRef property to FieldReadingType and renamed methodName to

readingMethod and moved into a choice element with this new type (Ref references a

Specification)

3. Added readingMethodRef property to WaterLevelReadingType and renamed method to

readingMethod and moved into a choice element with this new type (Ref references a

Specification)

Changes to Monitoring.xsd

1. Added the projectRef element as a mandatory property of the following type:

 a) SensorType

Changes to Geotechnical.xsd

1. Modifications to StaticConeTest and associated types:

 a) grouped all of the test parameter properties inta a new type called

StaticConeTestParameterType, extending diggs:AbstractSimpleMetadataType

 b) created new element called StaticConeTestParameters of type

StaticConeTestParameterType that extends AbstractInsituTestParametersType

 c) created new type called StaticConeTestParameterPropertyType to hold an optional

reference to StaticConeTestParameters

 d) deleted tabularData property (now replaced with gml:coverage construct) from

StaticConeTestType

DIGGS V2.0.a Documentation

 Page 200

 e) created a new element called StaticConeTestResults of type StaticConeTestResultsType that

adds cptLogTable property (a coverage type) in extending AbstractInsituTestResultsType.

 f) deleted StaticConeTest, StaticConeTestType and StaticConeTestPropertyType - no longer

needed.

2. Changed the type of the following properties from diggs:ReferenceType to gml:ReferenceType

 a. sources property of CompactionDetailType

 b. sources property of CompressiveStrengthDetailType

 c. sources property of ConsolidationDetailType

 d. sources property of MCVDetailType

 e. sources property of ShearBoxDetailType

3. Added specimenClampingMethodRef property to SchmidtReboundHardnessType and moved

specimenClampingMethod into a choice element with this new type (Ref references a

Specification)

4. Added saturationMethodRef property to StaticConeTestParameterType and moved

saturationMethod into a choice element with this new type (Ref references a Specification)

5. Modifications to DensityTest:

 a. created new element DensityTestParameters of type DensityTestParametersType

 b. created new element DensityTestResults of type DensityTestResultsType, incorporating

DensityMeasurementProperties

 c. deleted Density, DensityPropertyType, DensityType, DensityMeasurement,

DensityMeasurementType, and DensityMeasurementPropertyType - no longer needed.

 d. added DensityResultsPropertyType to support reference to density results in other tests.

Changed types from DensityMeasurementPropertyType of these properties to

DensityResultsPropertyType.

Changes to Piling.xsd

1. Changed the type of the following properties from diggs:ReferenceType to gml:ReferenceType

 a. sources property of PileConstructionType

2. Added dearingMethodRef property to MaterialPlacementLogType and moved dearingMethod

into a choice element with this new type (Ref references a Specification)

3. Added inspectionMethodRef property to InspectionType and moved inspectionMethod into a

choice element with this new type (Ref references a Specification)

DIGGS V2.0.a Documentation

 Page 201

4. Added drillingMethodRef property to ShaftMakeupType and moved drillingMethod into a

choice element with this new type (Ref references a Specification)

5. Added predictionMethodRef property to PredictedCapacityType and moved

predictionMethod into a choice element with this new type (Ref references a Specification)

Changes to gml3.2Profile_diggs.xsd

1. Modified RangeSetType to uncomment ValueArray element.

2. Added ValueArray, ValueArrayType, and referenceSystem attribute group to profile

(previously not included) so that the change above would validate.

D.8 Version 1.2.4.b

D.8.1 Change Log 2010-07-08T13:03

Author: David Burggraf

Date/Time: July-08-2010 1:03 PM

Schema Version: V1.2.4.b

Topic: Coverage Components

Description:

Changed Kernel.xsd so that ColumnInfo substitutes for gml:CompositeValue instead of

gml:ValueArray - following a review of the new coverage components in 1.2.4.a, I noticed the use

of gml:ValueArray could have been avoided (i.e. not added to the GML 3.2 profile profile)

because gml:CompositeValue is already there and has a very similar content model.

 <element name="ColumnInfo" type="diggs:ColumnInfoType" substitutionGroup="gml:CompositeValue"/>
 <complexType name="ColumnInfoType">
 <complexContent>
 <restriction base="gml:CompositeValueType">
 <sequence>
 <element ref="diggs:curves"/>
 </sequence>
 </restriction>
 </complexContent>
 </complexType>

DIGGS V2.0.a Documentation

 Page 202

D.8.2 Change Log 2010-07-12T19:14

Author: Daniel Ponti

Date/Time: Monday, July 12, 2010 7:14 PM

Schema Version: V1.2.4.b

Topic: General migration from 1.2.4.a to 1.2.4.b

Description:

Kernel.xsd changes:

1. Switched back to strong typed test features, but using parameters/results model:

 a. Deletion of parameters, results properties from AbstractLaboratoryTestType

 b. Deletion of LaboratoryTest element.

 c. Deletion of LaboratoryTestParameterPropertyType and

LaboratoryTestResultsPropertyType.

 d. Deletion of parameters, results properties from AbstractInsituTestType

 e. Deletion of InsituTest element.

 f. Deletion of InsituTestParameterPropertyType and InsituTestResultsPropertyType.

 g. Deletion of testType from AbstractTestType

2. Added new test elements/types for Geophysical Logs:

 a) GeophysicalLogTest/Type

 b) GeophysicalLogTestParameters/Type

 c) GeophysicalLogTestResults/Type

 d) ... and associated PropertyTypes

3. Added new complex type to support log parameters (diggs:IndexedParameterType) - modeled

from witsml:IndexedObject

Geotechnical.xsd changes:

1. Conversion of StaticConeTest and DensityTest back to strong-typed features but using the

parameters/results model:

 a. Creation of StaticConeTestParametersPropertyType and

StaticConeTestResultsPropertyType complex types. StaticConeTestParametersPropertyType

extends gml:AbstratMetadataPropertyType.

 b. Creation of StaticConeTest and StaticConeTestType - derives from AbstractInsituTestType

and adds results and parameters properties.

 c. Creation of DensityTestParametersPropertyType and DensityTestResultsPropertyType

complex types. DensityTestParametersPropertyType extends

gml:AbstratMetadataPropertyType.

 d. Creation of DensityTest and DensityTestType - derives from AbstractLaboratoryTestType

and adds results and parameters properties.

2. Added Test suffix to all tests and test types

DIGGS V2.0.a Documentation

 Page 203

3. Made parameter/results pattern changes to DilatometerTest (as described in e-mail to David

Burggraf).

4. Commented out DensityTest/DensityTestType, StaticConeTest/StaticConeTest type,

DilatometerTest/DilatometerTestType and GeophysicalLogTest/GeophysicalLogTestType

temporarily so that future scripting won't affect these.

D.8.3 Change Log 2010-07-20T17:50

Author: David Burggraf

Date/Time: Monday, July 20, 2010 17:50 PM

Schema Version: V1.2.4.b

Topic: Automated Conversion of Tests

Description:

An automated script was executed following Dan Ponti’s algorithm (documented below) to

convert most of the existing concrete (non-abstract) test structures to a new scheme structure

using a parameters/results property pattern. Before the conversion, each test consisted of at

minimum, one element and two types:

1) XXXTest (element of type XXXTestType, and belonging to either AbstractInsituTest

orAbsractLaboratoryTest substitution groups, depending on the type of test). XXX is

the name of the test.

2) XXXTestType (derives from either AbstractInsituTestType if an insitu test or

AbstractLaboratoryTestType if a lab test)

3) XXXTestPropertyType (a complex type that incorporates the XXXTest element by

reference).

Some tests have XXXDetail objects/types and detail property types. Detail types derive from

diggs:AbstractObjectType. To convert to the new test structure, the XXXTest element remains

unchanged, as does XXXTestPropertyType and any XXXDetail types. Only the existing

XXXTestType needs to be modified, and then additional elements and types need to be created

for each test.

The conversion algorithm followed for the new test test pattern was:

1) Convert non-abstract XXXTestType as follows

 a) change complexType name from XXXTestType to XXXTestResultsType

 b) change extension base from:

 i) if extension base is diggs:AbstractIntsituTestType, change extension base to

diggs:AbstractInsituTestResultsType

DIGGS V2.0.a Documentation

 Page 204

 ii) if extension base is diggs:AbstractLaboratoryTestType, change extension

base to diggs:AbstractLaboratoryTestResultsType

 -- leave the rest of the complex type alone.

2) Create a new complex type named XXXTestParametersType as follows:

 <complexType name="XXXTestParametersType">
 <complexContent>
 <extension base="diggs:AbstractLaboratoryTestParametersType">
<!-- If test is an insitu test, this line should read: <extension base="diggs:AbstractInsituTestParametersType"> -->
 <sequence>
<!-- Parameter properties to be inserted into the sequence for each test during domain review -->
 </sequence>
 </extension>
 </complexContent>
 </complexType>

3) Create a new element named XXXTestParameters as follows:

 <element name="XXXTestParameters" type="namespace:XXXTestParametersType"
 substitutionGroup="diggs:AbstractLaboratoryTestParameters" abstract="false">
<!-- namespace should be replaced with appropriate namespace identifier for the test -->
<!-- if test is an insitu test substitutionGroup should be "diggs:AbstractInsituTestParameters" -->
 </element>

4) Create a new element named XXXTestResults as follows:

 <element name="XXXTestResults" type="namespace:XXXTestResultsType"
 substitutionGroup="diggs:AbstractLaboratoryTestResults" abstract="false">
<!-- namespace should be replaced with appropriate namespace identifier for the test -->
<!-- if test is an insitu test substitutionGroup should be "diggs:AbstractInsituTestResults" -->
 </element>

5) Create a new complex type named XXXTestParametersPropertyType as follows:

 <complexType name="XXXTestParametersPropertyType">
 <complexContent>
 <extension base="gml:AbstractMetadataPropertyType">
 <sequence>
 <element minOccurs="0" ref="namespace:XXXTestParameters"/> <!-- namespace should be replaced with
appropriate namespace identifier for the test -->
 </sequence>
 </extension>
 </complexContent>
 </complexType>

6) Create a new complex type named XXXTestResultsPropertyType as follows:

DIGGS V2.0.a Documentation

 Page 205

 <complexType name="XXXTestResultsPropertyType">
 <sequence>
 <element minOccurs="0" ref="namespace:XXXTestResults"/> <!-- namespace should be replaced with
appropriate namespace identifier for the test -->
 </sequence>
 </complexType>

7) Finally, create a new XXXTestType complex type to replace the original test type that was

renamed. It will look like the following

 <complexType name="XXXTestType">
 <complexContent>
 <extension base="diggs:AbstractLaboratoryTestType"> <!-- or if this is an insitu test, this line changes to
<extension base="diggs:AbstractInsituTestType"> -->
 <sequence>
 <element name="parameters" type="namespace:XXXTestParametersPropertyType"/> <!-- namespace
should be replaced with appropriate namespace identifier for the test -->
 <element name="results" type="namespace:XXXTestResultsPropertyType"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

Did not apply the automated conversion to the complex types in Piling.xsd with the name

pattern XXXTestType, which do not currently derive from either AbstractLaboratoryTestType or

AbstractInSituTestType (but those that do derive from either of these types were changed). The

Piling schema was built independently from the Geotech schema and seems to use different

logic. The Piling schema will need to be substantially reworked with the appropriate subject

matter experts at a later stage. The conclusion from the last big workshop was that Piling was

out of scope for 1.2 - the emphasis was supposed to be on kernel and geotech, and the others if

there's time and budget.

Most of the tests were in the diggs:geo namespace but was run on all schema files for

completeness. The script searched from complex types that derive from either

AbstractInsituTestType or AbstractLaboratoryTestType.

D.8.4 Change Log 2010-07-23T18:49

Author: Daniel Ponti [mailto:dponti@usgs.gov]

Date/Time: Friday, July 23, 2010 6:49 PM

Schema Version: V1.2.4.b

Topic: GradingTest element changed and inappropriate base types of some tests corrected

Description:

GradingTest - this element was inappropriately named - it is a GML object as the base type

suggests, not a test.

mailto:dponti@usgs.gov

DIGGS V2.0.a Documentation

 Page 206

 <complexType name="GradingTestType">
 <complexContent>
 <extension base="diggs:AbstractObjectType">
 <sequence>
 <element name="percentPassing" type="witsml:generalMeasureType" minOccurs="1"
 maxOccurs="1"/>
 <element name="sieveSize" type="witsml:lengthMeasure" minOccurs="0" maxOccurs="1"/>
 <element name="sieveNumber" type="gml:CodeType" minOccurs="0" maxOccurs="1"/>
 <element name="type" type="gml:CodeType" minOccurs="0" maxOccurs="1"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

So the following changes were made:

1) element GradingTest name changed to Grading

2) complex type GradingTestType name changed to GradingType. Its extension base

remains AbstractObjectType.

3) complex type GradingTestPropertyType name changed to GradingPropertyType

4) All elements of type diggs_geo:GradingTestPropertyType had their types changed to

diggs_geo:GradingPropertyType to associate with the renamed property type.

Many occurrences of XXXTestType that have unexpected base types, i.e. not

AbstractLaboratoryTestType or AbstractIntsituTestType (e.g. some base values were found to

be: AbstractObjectType, AbstarctTestType, MaterialTestType). For example SlumpTestType:

<complexType name="SlumpTestType" mixed="false">
 <complexContent>
 <extension base="diggs_pil:MaterialTestType">
 <sequence/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="MaterialTestType" mixed="false">
 <complexContent>
 <extension base="diggs:AbstractTestType">
 <sequence/>
 </extension>
 </complexContent>
 </complexType>

DIGGS V2.0.a Documentation

 Page 207

D.9 Version 1.2.4.c

D.9.1 Change Log 2010-07-28T17:38

Author: David Burggraf

Date/Time: Wednesday, July 28, 2010 5:38 PM

Schema Version: V1.2.4.c

Topic: Automated conversion scripts tweaked and re-executed

Description:

There were 3 Abstract test types in Kernel.xsd (not changed):

diggs:AbstractTestType
diggs:AbstractLaboratoryTestType
diggs:AbstractInsituTestType

There was one test type in Environmental.xsd (changed to new pattern):

diggs_env:EnvironmentalTestType

One type called ‘diggs_geo:AggregateAbrasionTestValueType’ should have been changed to the

new pattern, so was renamed ‘diggs_geo:AggregateAbrasionValueTestType’ (and similarly for

its associated elements and types). Then the scripts were re-executed to convert to the new

pattern.

All the rest of the test types were in Geotechnical.xsd (changed to new pattern):

diggs_geo:AggregateAbrasionValueTestType
diggs_geo:AggregateCrushingValueTestType
diggs_geo:AggregateImpactValueTestType
diggs_geo:AtterbergLimitsTestType
diggs_geo:CBRTestType
diggs_geo:ChalkTestType
diggs_geo:CompactionTestType
diggs_geo:CompressiveStrengthTestType
diggs_geo:ConsolidationTestType
diggs_geo:DensityTestType
diggs_geo:DilatometerTestType
diggs_geo:DrivenPenetrationTestType
diggs_geo:ElongationIndexTestType
diggs_geo:FlakinessIndexTestType
diggs_geo:FrostSusceptibilityTestType
diggs_geo:HandVaneTestType
diggs_geo:InsituCBRTestType
diggs_geo:InsituDensityTestType
diggs_geo:InsituPermeabilityTestType
diggs_geo:InsituResistivityTestType

DIGGS V2.0.a Documentation

 Page 208

diggs_geo:InsituVaneTestType
diggs_geo:LaboratoryPocketPenetrometerTestType
diggs_geo:LaboratoryVelocityTestType
diggs_geo:LosAngelesAbrasionTestType
diggs_geo:MCVTestType
diggs_geo:MoistureContentTestType
diggs_geo:ParticleSizeTestType
diggs_geo:PermeabilityTestType
diggs_geo:PocketPenetrometerTestType
diggs_geo:PointLoadTestType
diggs_geo:PolishedStoneValueTestType
diggs_geo:PorosityTestType
diggs_geo:PressuremeterTestType
diggs_geo:PumpingTestType
diggs_geo:RedoxPotentialTestType
diggs_geo:RelativeDensityTestType
diggs_geo:SchmidtReboundHardnessTestType
diggs_geo:ShearBoxTestType
diggs_geo:ShoreHardnessTestType
diggs_geo:ShrinkageTestType
diggs_geo:SlakeDurabilityTestType
diggs_geo:SoundnessTestType
diggs_geo:StandardPenetrationTestType
diggs_geo:StaticConeTestType
diggs_geo:SuctionTestType
diggs_geo:TenPercentFinesTestType
diggs_geo:WaterAbsorptionTestType

The test types that were already changed manually and commented out were restored by un-

commenting them:

diggs_geo:DensityTestType
diggs_geo:DilatometerTestType
diggs_geo:StaticConeTestType

Issues Encountered:

The following elements extend from ‘diggs:AbstractLaboratoryTestType’, but do not have the

TestType suffix in the element name, so were not converted to the new test pattern.

diggs_env:AnalysisType
diggs_geo:FlameIonisationDetectorType
diggs_geo:PhotoIonisationDetectorType

DIGGS V2.0.a Documentation

 Page 209

D.10 Version 1.2.4.d

D.10.1 Change Log 2010-08-06T18:09

Author: David Burggraf

Date/Time: August-06-10 6:09 PM

Schema Version: V1.2.4.d

Topic: Resolved missing TestType name suffix issue and generated codelist spreadsheet

Description:

As discussed in the status meeting this week, the name suffix of the following 3 types were

changed to:

diggs_env:AnalysisTestType
diggs_geo:FlameIonisationDetectorTestType
diggs_geo:PhotoIonisationDetectorTestType

The scripts were re-executed to get the new outputs.

The codetypes script was also executed and a new spreadsheet was generated and saved as

CodeLists/SchemaV1.24CodeTypes.xlsx

Issues Encountered:

As a result of making the TestType name suffix changes described above, I noticed

diggs_env:SpectralAnalysisType derives by extension from AnalysisTestType (by adding the

single property ‘wavelength’). We need to address how to deal with extensions of a *TestType. It

was left it as is for now. Below is the SpectralAnalysis example:

<element name="SpectralAnalysis" type="diggs_env:SpectralAnalysisType"
 substitutionGroup="diggs_env:AbstractAnalysis" abstract="false"/>
 <complexType name="SpectralAnalysisType">
 <complexContent>
 <extension base="diggs_env:AnalysisTestType">
 <sequence>
 <element name="wavelength" type="witsml:lengthMeasure" minOccurs="0" maxOccurs="1"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>

DIGGS V2.0.a Documentation

 Page 210

D.11 Version 1.2.4.e

D.11.1 Change Log 2010-08-09T13:08

Author: David Burggraf

Date/Time: August-09-10 1:08 PM

Schema Version: V1.2.4.e

Topic: Draft DIGGS URN RFC submission for IANA

Description:

I drafted the URN RFC submission (The_DIGGS_URN_Standard.docx) following the URN

definition template (Appendix A of URN_DefinitionMechanisms_rfc3406.pdf) and based it as a

template on the OGC submission to IANA (OGC_URN_rfc5165_submittedToIANA.pdf). Action

to Loren: review and complete the highlighted sections of the document.

D.11.2 Change Log 2010-08-11T12:21

Author: Daniel Ponti

Date/Time: Wednesday, August 11, 2010 12:21 PM

Schema Version: V1.2.4.e

Topic: North American CRS's

Description:

Drafted a spreadsheet (\CRS\input\North American CRS.xls) of potential horizontal and

vertical CRS's

used in North America (US and Canada) dumped out of the EPSG database (v

6.5.2). The first worksheet lists the horizontal (2D) CRS's (there are

695 of them!). They are ordered by area name, which will make them a bit

easier for people to find (as opposed by sorting on EPSG code).

The second worksheet lists the 4 vertical coordinate systems to combine

with each of the horizontal ones (including CDN 1928 for Canada).

Finally, the last sheet lists the two compound CRS's already in the EPSG

database. We could (and probably should) have DIGGS codes for these as

well, but should note that there is an EPSG equivalent.

Each resultant compound CRS will be a combination of a horizontal system

with each of the vertical systems (695 x 4 = 2780 CRS's...)

D.11.3 Change Log 2010-08-12T12:25

Author: David Burggraf

Date/Time: Aug 12, 2010, at 12:25 PM

DIGGS V2.0.a Documentation

 Page 211

Schema Version: V1.2.4.e

Topic: North American CRS's

Description:

There are some EPSG codes specified in the North American spreadsheet that do not exist in the

latest version of the EPSG registry (V7.5) and hence are not supported by GeoTools. These were

probably retired sometime after V6.5. The following unsupported codes were removed from the

spreadsheet \CRS\input\North American CRS.xls:

63266406 WGS 84 (degH)
63266407 WGS 84 (Hdeg)
63266408 WGS 84 (DM)
63266409 WGS 84 (DMH)
63266410 WGS 84 (HDM)
63266412 WGS 84 (HDMS)

D.11.4 Change Log 2010-08-12T16:10

Author: David Burggraf

Date/Time: August-12-10 4:10 PM

Schema Version: 1.2.4.e

Topic: RE: North American CRS's

Description:

Used an XSLT script to generated the formal CRS dictionary definitions (both as WKT and as

GML) see:

CRS\output\DIGGS_GML_NA.xml
CRS\output\DIGGS_GML_UK.xml
CRS\output\DIGGS_GML_World.xml

CRS\output\DIGGS_WKT_NA.txt
CRS\output\DIGGS_WKT_UK.txt
CRS\output\DIGGS_WKT_World.txt

We used three input spreadsheets to generate these outputs see:

CRS\input\North American CRS.xls
CRS\input\UK CRS.xls
CRS\input\World CRS.xls

D.11.5 Change Log 2010-08-12T16:16

Author: David Burggraf

Date/Time: August-12-10 4:16 PM

DIGGS V2.0.a Documentation

 Page 212

Schema Version: V1.2.4.e

Topic: SpectralAnalysis fixed

Description:

Changed diggs_env:SpectralAnalysis element to a test type, renamed to SpectralAnalysisTest

and converted all the associated elements and types to the new test pattern as discussed in the

Wednesday status meeting. The corresponding testinstance.xml file was also modified so that it

was valid.

D.11.6 Change Log 2010-08-16T11:12

Author: David Burggraf

Date/Time: Aug 16, 2010, at 11:12 AM

Schema Version: V1.2.4.e

Topic: Automated Object/property rule check

Description:

Executed the automated GML conformance check using the Galdos GMLSDK and there were no

Object/property rule violations detected. There were some naming convention anomalies

however. The following types should start with an upper case letter:

percentMeasureType
geotechnicalDensityMeasure

 The following types would have the ‘Type’ suffix:

geotechnicalDensityMeasure
PercentDouble

The following elements should start with the ‘Abstract’ prefix (because they are abstract)

Reinforcement
PileConstruction
MaterialTest
LoadTestIncrement

DIGGS V2.0.a Documentation

 Page 213

D.12 Version 1.2.4.f

D.12.1 Change Log 2010-08-17T15:21

Author: David Burggraf

Date/Time: August-17-10 3:21 PM

Schema Version: V1.2.4.f

Topic: Automated Object/property rule conformance changes

Description:

Made changes as suggested in Change Log 2010-08-16T11:12. However the name change from

‘percentMeasureType’ to ‘PercentMeasureType’ caused an issue because ‘PercentMeasureType’

already exists. Changed the existing ‘percentMeasureType’ to ‘PercentMeasureType’ and the

existing ‘PercentMeasureType’ to ‘Val0-100MeasureType’

D.13 Version 1.2.4.g

D.13.1 Change Log 2010-08-26T14:30

Author: David Burggraf

Date/Time: August-26-10 2:30 PM

Schema Version: V1.2.4.g

Topic: referenceEdge, WitsML profile, test instance

Description:

The following changes were made:

1. Added referenceEdge property to diggs:AbstractPlanarLocationType
2. Removed the 161 unused WitsML schema files
3. Updated testinstance.xml with

a. new trench wall instance
i. new referenceEdge instance,

ii. simple polygon as feature extent
b. new urn values (replaced ‘:DIGGSINC’ with ‘:DIGGS’)
c. added and corrected srsName values (someref -> epsg 7405)

Note that referenceEdge is mandatory (minOccurs=1), similar to referencePoint. The planar

referencing now makes use of the referenceEdge, not the featureExtent:

DIGGS V2.0.a Documentation

 Page 214

I checked by viewing the testinstance.xml with the Snowflake GML Viewer 4.0 and the polygon

now shows up as shown in the following screenshot (see the red box below).

D.13.2 Change Log 2010-08-26T14:36

Author: David Burggraf

Date/Time: August-26-10 2:36 PM

Schema Version: V1.2.4.g

DIGGS V2.0.a Documentation

 Page 215

Topic: DIGGS CRS Dictionary

Description:

1. Single file instead of multiple files created for GML dictionary and WKT dictionaries:
a. CRS\output\DIGGS_GML_CRS_DICTIONARY.xml
b. CRS\output\DIGGS_WKT_CRS_DICTIONARY.txt

2. Dictionary Version set to 0.1 on all identifier values in GML dictionary
3. ‘DIGGSINC’ replaced with ‘DIGGS’
4. WKT has no version tag (see documentation

http://geoapi.sourceforge.net/2.0/javadoc/org/opengis/referencing/doc-files/WKT.html), so no
version has been assigned to WKT defns.

D.14 Version 1.2.4.h

D.14.1 Change Log 2011-01-11T10:52

Author: Daniel Ponti

Date/Time: Tuesday, January 11, 2011 10:52 AM

Schema Version: V1.2.4.h

Topic: Latest testInstance revision, etc.

Description:

Revised testInstance.xml as follows:

1) Changed the trench wall layer, following the pattern we discussed -with a position property

that includes base and top linestrings, and a representative polygon that uses a ring structure. I

didn't use the OrientedCurve as it's not available in the current profile, but I ordered the

coordinates of the various curve elements to provide a contiguous order for the trench wall

layers.

2) I added a sample activity and sample using the measuredDepth borehole position so that it

can be rendered as a symbol

 <SamplingActivity gml:id="pointSample">
 <projectRef xlink:href="#p1"/>
 <associatedLocationRef xlink:href="#LB_Webster"/>
 <activityPosition>
 <BoreholePosition gml:id="pt1">
 <measuredDepth>
 <gml:Point gml:id="pt1-1">
 <gml:pos srsName="#sr123" srsDimension="1">30</gml:pos>
 </gml:Point>

http://geoapi.sourceforge.net/2.0/javadoc/org/opengis/referencing/doc-files/WKT.html

DIGGS V2.0.a Documentation

 Page 216

 </measuredDepth>
 </BoreholePosition>
 </activityPosition>
 <samplesProduced>
 <SampleProduced gml:id="ptsp">
 <sampleRef xlink:href="#sampt"/>
 <samplePosition>
 <BoreholePosition gml:id="pdbp">
 <measuredDepth>
 <gml:Point gml:id="pt1-2">
 <gml:pos srsDimension="1" srsName="#sr123">30</gml:pos>
 </gml:Point>
 </measuredDepth>
 </BoreholePosition>
 </samplePosition>
 </SampleProduced>
 </samplesProduced>

Revised kernel.xsd includes the new elements for encoding positions of layers on trench walls.

The new modifications are:

1) added trueTopObserved and trueBaseObserved boolean properties (optional) to the

AbstractLocationPosition base class.

2) added layerIntersectionPosition property to TrenchWallPositionType as an additional

position choice.

3) layerIntersectionPosition is of type LayerIntersectionPropertyType that refers to a

LayerIntersections object of type LayerIntersectionType. This type inherits from

diggs:AbstractObjectType and adds three mandatory properties: a) layerTopIntersection

(MultiCurvePropertyType), b) layerBaseIntersection (MultiCurvePropertyType), and c)

representativeSurface (1..n; SurfacePropertyType).

D.14.2 Change Log 2011-01-13T09:20

Author: David Burggraf

Date/Time: January-13-11 9:20 AM

Schema Version: V1.2.4.h

Topic: DIGGS KML Output

Description:

The KML output was generated for the latest test instance using the KML tool. Linear

referencing and planar referencing are both supported in the KML styling. Multiple CRS

handling is supported (by GeoTools). The KML CRS WKT has been transcribed from the GML

DIGGS V2.0.a Documentation

 Page 217

defn to a WKT now supported by GeoTools as an extension. The KML WKT is as follows (note

that the vertical datum begins at the WGS 84 Geoid:

COMPD_CS["urn:ogc:def:crs:OGC:LonLat84_5773",
 GEOGCS["WGS 84",
 DATUM["World Geodetic System 1984",
 SPHEROID["WGS 84", 6378137.0, 298.257223563, AUTHORITY["EPSG","7030"]],
 AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]],
 UNIT["degree", 0.017453292519943295],
 AXIS["Geodetic longitude", EAST],
 AXIS["Geodetic latitude", NORTH],
 AUTHORITY["EPSG","4326"]],
 VERT_CS["EGM96 geoid height",
 VERT_DATUM["EGM96 geoid", 2005, AUTHORITY["EPSG","5171"]],
 UNIT["m", 1.0],
 AXIS["Gravity-related height", UP],
 AUTHORITY["EPSG","5773"]]]

In particular, the DIGGS SampleActivity and Sample are supported. Here’s a screen shot:

DIGGS V2.0.a Documentation

 Page 218

D.14.3 Change Log 2011-02-11T14:32

Author: David Burggraf

Date/Time: February-08-11 2:32 PM

Schema Version: 1.2.4.i

Topic: Revised GML Profile, testInstance.xml with support for OrientableCurve.

Description:

The schemas were updated with a revised GML3.2 profile and testInstance.xml instance that

makes use of OrientableCurve (see excerpt in bold copied below).

DIGGS V2.0.a Documentation

 Page 219

<representativeSurface>
 <gml:Polygon gml:id="lt1-p">
 <gml:exterior>
 <gml:Ring>
 <gml:curveMember xlink:href="#twp-int-11"/>
 <!--Top edge -->
 <gml:curveMember>
 <gml:LineString gml:id="lt1-1">
 <!--Right edge -->
 <gml:posList srsDimension="2" srsName="#lsrs002">50 1 50
 4</gml:posList>
 </gml:LineString>
 </gml:curveMember>
 <gml:curveMember>
 <gml:OrientableCurve gml:id="OC_twp-int-12" orientation="-">
 <gml:baseCurve xlink:href="#twp-int-12"/>
 </gml:OrientableCurve>
 </gml:curveMember>
 <!--Basal edge in reverse orientation -->
 <gml:curveMember>
 <gml:LineString gml:id="lt1-2">
 <!--Left edge -->
 <gml:posList srsDimension="2" srsName="#lsrs002">0 5 0 2</gml:posList>
 </gml:LineString>
 </gml:curveMember>
 </gml:Ring>
 </gml:exterior>
 </gml:Polygon>
</representativeSurface>

D.15 Version 1.2.4.j

D.15.1 Change Log 2011-05-12T22:36

Author: Daniel Ponti

Date/Time: May-12-11 10:36 PM

Schema Version: 1.2.4.j

Topic: Tests and Layer changes.

Description:

Changes are primarily for the tests, but there are also some layer changes as well. The main

change for the tests is that we're more closely following the O&M paradigm, but essentially

generalizing the coverage model we used for CPT tests and geophysical logs to all kinds of

measurements. One issue that's come up is how to handle temporally varying measurement info

DIGGS V2.0.a Documentation

 Page 220

at both one location as well as a domain of locations (I think we need to add back into our profile

more of the gml:Coverage model), as well as handling other tabular types of results that are

indexed on other types of informaiton (pressure cycles, etc.)

D.15.2 Change Log 2011-05-12T09:15

Author: David Burggraf

Date/Time: May-12-11 9:15 AM

Schema Version: 1.2.4.j

Topic: Linear Referencing

Description:

Some issues were identified in GML 3.3 linear referencing structure. Specifically the offset

plane, being perpendicular to the line string, is discontinuous across angle breaks in the line

string. As a result we have now adopted the vector offset approach. The latest changes due to

the GML 3.3 Vector Offset developments are contained in glrovProfile_diggs.xsd and are now

supported in testInstance.xml and both the Excel and KML tools.

D.15.3 Change Log 2011-05-19T07:15

Author: David Burggraf

Date/Time: May-19-11 7:15 AM

Schema Version: 1.2.4.j

Topic: Enumerated lists

Description:

The original criterion for selecting the codelists was that type="gml:CodeType", and not a based

on a string enumeration. All of the string enumerations have now been extracted from the

DIGGS 1.2.4.j schemas (in addition to the gml:CodeTypes) and the generated output is in the

third ‘Enumerations’ worksheet of /CodeLists/SchemaV1.24CodeTypes.xlsx.

D.16 Version 1.2.4.k

D.16.1 Change Log 2011-05-19T07:58

Author: Daniel Ponti

Date/Time: May-19-11 7:54 AM

DIGGS V2.0.a Documentation

 Page 221

Schema Version: 1.2.4.k

Topic: Test handling

Description:

This version implements a proposed change in how DIGGS handles tests:

The top level test features in prior versions have been replaced by a single Measurement feature.

This feature is patterned after the OGC Observation feature (but doesn't derive from it). It is

defined as an event, whose results are estimates of the value of a property or properties of

interest at a position or series of positions on or within the earth. The feature has two main

properties: 1) outcome, and 2) procedure. The outcome property contains a MeasurementResult

object that derives from a GML coverage feature. This feature contains both the position

information for the measurement (eg. where the measurement applies), that derives from the

coverage domain, and a results property (derives from the coverage range) that contains

information about the property(ies) derived from the measurement, and the value(s) of those

properties. The procedure property contains zero to one test object, that describes the metadata

for the test procedure and any interim results of value. The existing test features in prior

versions of DIGGS are being converted to these test objects - and contain the same parameter

properties as before, minus the properties that are the reported test results.

The Geotechnical.xsd schema in this current version only contains a few test oprocedures. Loren

is working on converting the others and making sure they are mappable to the AGS 4.0 data

dictionary. The file Geotecnical-old.xsd is the prior (1.2.4.j) version.

A new test instance document: testinstance-newMeasurements.xml, shows how the new

Measurement structure works for both the prior tests in that document, and a few others.

Advantages/Rationale for the change:

1) All "results" of test (eg. soil, chemical, hydrologic properties) occur at a single place in the

schema. In this encoding scheme, the "result" is what matters and can be easily extracted from

an instance document.

2) Measurement results can be reported without the need to instantiate a fake sample or test

feature for legacy data where only the result and position are known. While the procedure

property is a mandatory part of the Measurement feature, it need not be populated by a

measurement object.

3) All results are encoded in the same consistent fashion - results of in-situ tests, CPT,

geophysical logs, lab tests on samples, etc.

4) Provides a more flexible and practice-friendly means of associating results with test

procedures and sampling features.

DIGGS V2.0.a Documentation

 Page 222

4) Provides a basis for developing a parallel structure for time-varying observations (eg.

monitoring).

Disadvantages:

1) Currently uses a generic property object to describe the property being measured - this means

that the property type must come from a controlled list (dictionary) to maintain interoperability.

2) Some schema control is lost (more dependence on schematron to ensure that an instance

document makes sense).

3) GML coverage encoding for all measurement results is not as human readable and somewhat

more complex to parse.

However, current DIGGS is already saddled with these problems w/respect to how CPT and

geophysical logs need to be encoded and will have similar issues with any kind of test and

monitoring results that are tabular in form, so we don't see these issues and being a significant

detriment to this plan.

In addition, 1.2.4.k makes some relatively minor changes to the layer system structure and in

particular the lithology layer and lithology objects to better accommodate US DOT practice.

D.17 Version 2.0a

D.17.1 Change Log 2012-02-10T12:55

Author: Daniel Ponti

Date/Time: February-10-12 12:55 PM

Schema Version: 2.0a

Topic: Migration from V1.2.4.k to 2.0a

Description:

Changes:

1) Changed name of Location and all of it's siblings to SamplingFeature. This normalizes it

more with O&M and lets us use the term location to mean what it normally means in

the English language. This mostly only affects abstract elements and base types - there

some but not a lot of impacts to the instances.

2) Removed monitoringInstallations as a top level property; replaced with the Monitoring

structure, which derives from AbstractMeasurement

DIGGS V2.0.a Documentation

 Page 223

3) Added investigationTargets as a top-level property and built AbstractInvestigationTarget

base type for these targets (equivalent to OM feature-of-interest). The base type right

now is the same as diggs:AbstractFeature. This will be the category of features that are

the "targets" for DIGGS data - eg. ground investigations, embankments, piles,

roadways, etc.

4) Created an element and associated base types for Ground, which extends

AbstractInvestigationTarget (but adds no additional properties). It is currently the only

concrete investigation target in this version of DIGGS.

5) Added mandatory investigationTargetRef be identified for every sampling feature,

measurement (eg. test and monitoring), and sampling activity - DIGGS features where

the locationRef is not mandatory.

6) Added Well as a new concrete SamplingFeature.

7) Created two additional sampling features: Transect and Face, to represent a generic

linear and planar sampling feature (such as a linear transect or outcrop). These use the

abstract type without extensions.

8) Removed AbstractLocation and type - not needed - diggs:AbstractGeometry contains all

needed elements;

9) Deleted LayerIntervalType - not needed any longer.

10) Removed ValueAtTime, ValueAtDepthbyTime and ValueAtType elements and

properties - not needed.

11) Eliminated most comments except for CDATA and DSB profile restrictions.

12) Changed a number of gml: geometries to their diggs-derived equivalents. Did not do

this for referenceEdge, featureExtent, and relativeFeatureBoundary of

AbstractPlanarSamplingFeature. Probably should, but want to consult with David first.

13) Reduced the number of diggs geometry features to eliminate redundancy (eg.

DepthInterval and CurveLocation merged into a single LinearExtent feature)

14) Abstracted Measurement and defined a base type (AbstractMeasurement) that holds all

of the required and optional references that a measurement might have. Renamed

Measurement to Test to be used for measurements that occur at a single time instant or

within an interval of time but where time is not an integral part of the result (eg. the

position indexed results). Created a Monitoring feature that would be used for

measurements taken at a non-varying position or location, but where the results are

time-indexed. This covers the end members for measurements.

DIGGS V2.0.a Documentation

 Page 224

15) For Monitoring, although it parallels the Test structure, there is no real procedure. I

replaced the procedure property with a process property that contains the diggs

metadata property group to allow recording of specifications and equipment. However,

there is some redundancy here; as the Property object of a measurement also contains

a property called detectorRef that can reference equipment used to record the specific

property. So, should we limit procedure to only reference or describe a specification?

16) Created ChemicalAnalysis in the environmental namespace as a test procedure that can

store info for chemical tests (such as sample volume, type, etc.) and also modified

SpectralAnalysis to extend ChemicalAnalysis. We need to discuss this with the

environmental SIG and see if there shouldn't be some other concrete procedures for

these chemical tests.

17) Removed WaterLevelReading and associated types in Environmental and converted the

properties here to result properties, or added to the Property object to be used within

the Monitoring structure. There are a couple of properties that either seemed

redundant or I didn't understand that I did not transfer. We need to talk with folks in

Environmental to decide what to do with these:

a) captureQualifier - no clue what this means,

b) type property for the reading - unclear what this is supposed to represent - if it is

method specific this is handled in the procedure.

c)

There are some tradeoffs here where some types of recorded info for fluid levels

may result in repetition of values in the data block (eg. like fluid_type) and by

measurement-specific reporting constraints. This can be avoided somewhat by

expanding the result property definitions we support, but this is likely to get

unwieldy. We can discuss this a bit so I can fully explain.

There's still some things in Environmental I don't yet know what to do with - eg

Filtration, Purge, TICResult. Fitration sits on its own, and probably should be

melded into the samplePreparation structure somehow. Purge is a procedure that

might work within a monitoring measurement. How is Purge different from the

Pumping test in the Geotechnical schema? TICResult (I think this is total organic

carbon), should go into the set of property classes for measurement results, but

maybe there should be another test procedure for this? Again, I think we need to

consult with the Environmental SIG.

18) Commented out a lot of code in Monitoring and Environmental that is no longer

needed. I left water level measurements in Environmental for now, but this would

DIGGS V2.0.a Documentation

 Page 225

probably again morph into a monitoring measurement with the procedure or detector

being a water level test or something like that.

19) Fixed a few odds and ends to make sure everything validated.

20) Changed the testInstance to validate against the new changes.

21) Eliminated the Monitoring schema - with the monitoring feature in kernel, it is no

longer needed.

Still need

1) Proper typing for the Monitoring results and Time objects - how best to construct this

we can leave for David.

2) Cleaning up witsml units and base types - incorporating all within the diggs

namespace and putting all simple types and unit/enumeration types into a separate

.xsd document (David)

3) Additional annotations (Dan and Loren)

4) Checking dependencies and eliminating orphaned elements and types (David).

D.17.2 Change Log 2012-03-01T14:04

Author: David Burggraf

Date/Time: Thursday, March 01, 2012 2:04 PM

Schema Version: 2.0a

Topic: Property Info

Description:

Created an xslt script according to the mapping rules specified by Dan and ran it on the input

.xml file. The input .xml file was derived from a witsml dictionary of log properties, along with

their descriptions. The XML file was transformed into an Excel table using the following

mapping:

XML input Spreadsheet output

name Property Name

description Description

DIGGS V2.0.a Documentation

 Page 226

name Code (with underscore

characters '_' in name value

replaced by single white space

in Code value)

The two output formats are: Excel XLS and the more generic CSV.

D.17.3 Change Log 2012-03-14T00:44

Author: David Burggraf

Date/Time: Wednesday, March 14, 2012 12:44 AM

Schema Version: 2.0a

Topic: Review of 2.0a draft

Description:

The following changes were made in this version:

1. Linear referencing finalization to be released as GML 3.3.1 corrigendum

2. Updated schema namespace to V2.0a

3. Updated testInstance.xml to validate against schema changes

DIGGS V2.0.a Documentation

 Page 227

Appendix E. DIGGS Meeting Notes

E.1 Teleconference Meeting Notes 2010-01-06

Date: January 6, 2010

Time: 7:30 AM – 8:00 AM (PST)

Participants: Loren Turner

 Dan Ponti

 David Burggraf

Not Available: Chris Bray

 Fiona Bruce

Agenda: Continue our discussion from last month on the domain-independent issues, but bring

Chris Bray into the discussion. The one particular issue that we wanted to discuss with

Chris had to do with the organization of the schemas and the use of namespaces. I've

included the notes from that last meeting below.

Notes:

 Scripts for object-property rule conversion:

o David reported that they are currently writing the scripts to deal with the object-property

issue and are almost ready to run the scripts on all the DIGGS schemas.

o Dan requested that David email one of the converted schemas files to him when

completed (if that doesn’t require extra work) to see the difference in structure when

viewed in Altova or Stylus.

 Namespace issue:

o We reviewed the discussion from the prior meeting regarding the namespace and

schema organization issue. We reviewed the two options that were considered:

 Option (1): Single namespace with 5 schema files (Kernel, Geotechnical,

Environmental, Piling, Monitoring). Some reorganization of elements might be

needed.

 Option (2): 5 namespaces and 5 schema files.

o Dan cited issues with the use of multiple namespaces, namely that substitution groups

and use of explicit namespace prefixes are not handled uniformly between XML parsers.

o David explained the use of explicit namespace prefixes and common conventions:

 Default namespace doesn’t need the prefix and is usually the application

namespace that occurs most frequently.

 In a DIGGS instance file the DIGGS namespace will likely be the default

namespace.

 Meetings in the future:

o David will email a weekly status update on Monday/Tuesday of each week.

o David, Dan, Chris, Loren will tentatively schedule a weekly teleconference meeting for

Thursday mornings 7:30 AM (PST) to follow up on issues identified in the weekly report.

o Loren will set up the meetings and WebEx and will send meeting invitations.

DIGGS V2.0.a Documentation

 Page 228

E.2 Teleconference Meeting Notes 2010-01-12

Date: January 12, 2010

Time: 7:30 AM – 8:00 AM (PST)

Participants: Loren Turner

 Dan Ponti

 David Burggraf

 Fiona Bruce

 Scott Deaton

 Scot Weaver

 Salvatore Caronna

 Chris Bray

Not Available: Roger Chandler

 Tim Spink

 Cliff Roblee

 Jean Benoit

 John Bobbitt

 Marc Hoit

Agenda: This purpose of this meeting is to brief the Core SIG on the recently executed contract

with Galdos to carry out work under Tasks 2 & 4, and discuss the initial strategies for

meetings.

Notes:

 Contract with Galdos was executed on December 22, 2009 to carry out work under Tasks 2 & 4.

o Domain Independent Schema Work, leading to release of DIGGS v1.1.

 GML “Object‐Property” Patterning

 Update to GML 3.2

 Inheritance of Objects

 Use of GML Profiles

 Organization of DIGGS Schemas

 Relative Referencing of Schemas

o Domain Dependent Schema Work, leading to release of DIGGS v1.2.

 Code Tables

 Key Fields

 Table Data

 Galdos is proceeding with the domain-independent work right now.

 Ponti and Turner held telecon with Galdos last week to discuss domain-independent work and

provided some initial guidance to get them started.

 Regarding the Galdos contract and involvement of the Core SIG, Turner proposed, and Core SIG

concurred:

o Core SIG participates in the kickoff meeting, and the meetings prior to the major DIGGS

releases (v1.1, v1.2, and v2.0)

DIGGS V2.0.a Documentation

 Page 229

o For the technical schema meetings with Galdos on Task 2 issues, a smaller technical

group from the Core SIG works with Galdos more closely, and bring issues to the Core

SIG as needed.

o Technical group includes Bray, Ponti, and Turner.

o Turner acts as a coordinator/organizer for the work, bringing design issues to the Core

SIG as needed, and communicating to the Core SIG on progress over the course of the

contract.

 Established 3 Technical Sub-Groups to work with Galdos on specific domain dependent issues.

o Work is conducted in parallel to the domain independent work.

o Begin work this week.

o Team members:

Technical

Sub-Group

Members Initial Meeting

Key Fields Salvatore Caronna

Scott Deaton

Dan Ponti

Chris Bray

Loren Turner

David Burggraf

1/14/10, 8:30 am (PST)

Table Data Scott Deaton

Dan Ponti

Chris Bray

Loren Turner

David Burggraf

1/21/10, 8:30 am (PST)

Code Tables Tim Spink (to be confirmed)

Dan Ponti

Chris Bray

Loren Turner

David Burggraf

1/28/10, 8:30 am (PST)

(to be confirmed)

o Technical Sub-Group logistics:

 3 scheduled telecom/WebEx meetings per group to discuss specific issue.

 Turner will make meeting arrangements.

 Meetings will be scheduled generally on a Thursday 8:30 am (PST).

 Meetings may last 1-3 hours.

 Other Core SIG members may join these sub-group meetings if interested.

 Project timeline will be modified to account for 1 month delay in getting Tasks 2 & 4 contracts in

place.

DIGGS V2.0.a Documentation

 Page 230

E.3 Teleconference Meeting Notes 2010-01-14T07:30

January 14, 2010

Time: 7:30 AM – 8:30 AM (PST)

Participants: Loren Turner

 Dan Ponti

 David Burggraf

 Chris Bray

Not Available:

Agenda: Weekly status meeting.

Notes:

 David summarized the work for this week resulting in a revised self-contained draft of the DIGGS

schemas (emailed to us yesterday). Revisions:

o Using uppercase for the first letter of each schema file name

o Adding the Geophysical.xsd import to the Complete.xsd

o Addressing the Object/Property rule issues (still subject to testing).

o Used relative paths for schemaLocations

o The schemas are currently divided into 6 namespaces as follows:

 xmlns:diggs="http://schemas.diggsml.com/1.0a"

 xmlns:diggs_geo="http://schemas.diggsml.com/1.0a/geotechnical"

 xmlns:diggs_env="http://schemas.diggsml.com/1.0a/environmental"

 xmlns:diggs_mon="http://schemas.diggsml.com/1.0a/monitoring"

 xmlns:diggs_pil="http://schemas.diggsml.com/1.0a/piling"

 xmlns:diggs_gph="http://schemas.diggsml.com/1.0a/geophysical"

 Chris confirmed that Geometry.xsd schema was no longer needed and could be completely

removed.

 David will create an instance file using the revised schemas for further testing.

 Dan noted that the Geophysical.xsd will need more work following the “table data” discussion

next week.

 The namespace issue was discussed at length.

o Goals:

 DIGGS not be made more complex than necessary

 Retain modularity

 Software vendors may only support specific DIGGS components, not the entire

standard. Need a way to accommodate this – ideas include:

 Retain multiple namespaces as is the case currently

 Create DIGGS profiles that limit application to specific domains.

o Considerations for using a single namespace:

 Fewer include statements in instance documents

 Reduces issues with certain XML parsers resolving namespaces

 GML and WITSML have been deployed under a single namespace

DIGGS V2.0.a Documentation

 Page 231

 New versions will require updates for users, even though the schemas they use

may not have been affected.

o Considerations for using multiple namespaces:

 DIGGS is a complex schema and warrants it

 GML is moving to multiple namespaces

 Distinguishes some elements with similar names, for example “sample” currently

takes on different meanings in the different namespaces. (Ponti noted that we

should reconsider the concept of “sample” to take on a more global meaning.)

o Path forward at this time:

 Adopt the six namespaces suggested by Burggraf:

 xmlns:diggs="http://schemas.diggsml.com/1.0a"

 xmlns:diggs_geo="http://schemas.diggsml.com/1.0a/geotechnical"

 xmlns:diggs_env="http://schemas.diggsml.com/1.0a/environmental"

 xmlns:diggs_mon="http://schemas.diggsml.com/1.0a/monitoring"

 xmlns:diggs_pil="http://schemas.diggsml.com/1.0a/piling"

 xmlns:diggs_gph="http://schemas.diggsml.com/1.0a/geophysical"

 Have separate meeting with Turner, Ponti, and Bray to identify elements such as

“hole,” that may be more appropriate to move under Kernel.xsd.

E.4 Teleconference Meeting Notes 2010-01-14T08:30

Date: January 14, 2010

Time: 8:30 AM – 9:30 AM (PST)

Participants: Loren Turner

 Dan Ponti

 David Burggraf

 Chris Bray

 Salvatore Caronna

Not Available: Scott Deaton

Agenda: Discussion of “Key Fields” issue.

Notes:

 The “key fields” issue is not an issue that can be addressed in the schema alone.

 The schema is already set up to accommodate the use the key fields, however, rules on

how those keys are assigned, applied, and used need to be documented.

DIGGS V2.0.a Documentation

 Page 232

 Validation of the keys will likely need to be handled using a combination of schema

validation and/or external software tools (e.g. schematron, java, web service, etc.).

 There’s a need to establish business rules.

o Ponti suggested setting up a special team to work on this.

o Caronna volunteered to lead this team. Action items:

 Enlist help from Scott Deaton, Roger Chandler, Scot Weaver, and Derrick

Dasenbrock

 Draft up a document describing what the team will do, and send draft to

Turner this week or next before sending to the team.

 Carry out the team’s work over the next few weeks.

 Communicate the team’s recommendation back to our group (Burggraf,

Turner, Ponti, Bray)

 Will document the proposed business rules in a non-technical manner.

o Business rules could govern:

 Positional data (e.g. top depth higher than bottom depth, hole position is

within project limits)

 Test data (e.g. Plasticity Index value is a positive integer between 0 and

100)

 Formats and standards for key fields and identifiers to assure compliance

with database-driven applications such as gINT and Holebase

 Rules should insure that IDs are unique

 Other types of data?

o Not clear how detailed we want to get with application of business rules.

o At minimum, the rules should be restrictive enough to insure that the software

vendors can import/export DIGGS as easily as possible.

 Discussion about IDs:

o With GML 3.2, IDs are mandatory for all objects.

o GML IDs must be unique within an instance document.

o DIGGS identifiers are unique within the DIGGS community:

 Uses unique 3-alpha minimum organization identifier

 Each organization insures uniqueness of ID.

 The organization’s ID assures uniquess in the community

o The GML ID can be used to replace the DIGGS ID, while applying the DIGGS

restrictions in the GML profile.

o Action Item – David will remove DIGGS ID element and apply the DIGGS

restrictions to the GML ID in the profile.

E.5 Teleconference Meeting Notes 2010-01-28T07:30

Date: January 28, 2010

Time: 7:30 AM – 9:00 AM (PST)

Participants: Loren Turner

 Dan Ponti

DIGGS V2.0.a Documentation

 Page 233

 David Burggraf

 Chris Bray

Not Available:

Agenda: Weekly status meeting.

Notes:

 Burggraf summarized the work for the past two weeks and explained the revised schemas

emailed to the group on 1/26/10 (DIGGSdraft0.3.zip).

 Burggraf developed a single namespace version of the DIGGS schema (Diggs1ns.xsd) and

created and instance document from this. He reported that the schema validated in seconds.

 The group decided at this time to continue with the multiple namespace approach to facilitate

development of schemas.

 Discussed the issue of moving elements within the various namespaces. (This may result in a

significant structural change to the organization of DIGGS elements.)

o Intent is to reduce the number of namespaces needed to be included in an instance

document.

o Typical instance document should have 2 namespaces – likely the “Core” plus one other.

o Ponti suggested that all elements related to location be moved to the kernel schema.

 The elements “where you observe things” or “ where you collect things” should

be in the kernel.

 Separate the observational information from the location (e.g. hole, trial pit,

exposure) where it was observed.

 Example – “fracture spacing” is a geotechnical feature that can be observed in

boreholes, but also in trial pits or on exposures on a rock face. Fracture spacing

therefore not unique to the hole element in the geotechnical schema.

o Bray explained that current schema uses abstract types (?) to facilitate inheriting

elements like fracture type in other location types.

 Only modify the observation (e.g. fracture spacing) in one place in the schema.

 User ignores the element if they don’t use it.

o DIGGS v1.0a elements are related by a mix of hierarchical constructs (parent-child) and

referencing (xlink:href and id tags).

 Not clear if the mix of these approaches is good.

 Burggraf believes that either approach can be used successfully.

o ACTION ITEM:

 Need to have meeting to resolve fundamental issue of schema organization.

Consider questions:

 Continue development with current schema structure?

DIGGS V2.0.a Documentation

 Page 234

 Revise structure to make more use of element ids and referencing?

 Pros/cons of each?

 What’s better for the software vendors with respect to implementation?

 What approach is more conducive to mapping to/from databases?

 Extensibility into future?

 Complexity?

 Validation?

 Other considerations?

 Turner organize meeting of the 4 software vendors in the next 2 or 3 weeks:

 Keynetix

 gINT

 Dataforensics

 Earthsoft

 Ponti and Bray each prepare a presentation to provide context for discussion.

 Burggraf brought up issue of coordinate systems.

o Bray said that what’s in DIGGS right now was there prior to him working on it. No issues

with changing it.

o Ponti suggests that Burggraf recommend how to handle this.

o Group will discuss this further next week.

 Burggraf summarized progress:

o Anticipates conversion of the schemas to GML 3.2 prior to the next meeting.

o Need to discuss validation testing plans after 3.2 conversion.

o Most domain-independent issues are addressed now.

o CRS issue could be resolved by next Thursday.

E.6 Teleconference Meeting Notes 2010-01-28T09:00

Date: January 28, 2010

Time: 9:00 AM – 10:00 AM (PST)

Participants: Loren Turner

 Dan Ponti

 David Burggraf

 Chris Bray

 Scott Deaton

Not Available: n/a

Agenda: Discussion of “table data” handling in DIGGS.

Notes:

 Team reviewed the various options of dealing with table data throughout the DIGGS schema.

Bray explained the approach used for DIGGS to date. We reviewed the approaches and options

DIGGS V2.0.a Documentation

 Page 235

presented in the Compusult report. Ponti presented an approach used in the cosmosDIGGS

schema for CPT data. Three primary options were generally discussed:

o All data in a “block” within a single XML element (DIGGS V1.0a and WITSML).

o Data “rows” captured in separate elements (cosmosDIGGS).

o Data “columns” captured in separate elements (Compusult recommendation)

 Bray reminded group that he had written a series of articles posted to the DIGGSml.com website

on the subject of implementing table data. It would be valuable for the team to take a look at

these again to gain some context for why the current DIGGS structure is implemented as it is.

You can find the aticles posted here:

o http://www.diggsml.com/monitoring-and-samplingpoint-object-part-3

o http://www.diggsml.com/monitoring-and-samplingpoint-object-part-4

 Bray’s “part 4” article summarizes the DIGGS implementation:

“It was decided that DIGGSMLs implementation should follow the WITSML

implementation as much as possible, but it should also be compatible with SensorML, so

a number of objects were renamed to coincide with SensorML, with a view to only having

to learn one lexicon when representing monitoring data in XML, some properties were

also added to ease this compatibility.”

 Deaton explained that vendors will need to know the specific “names” for the columns in the data

block in order to parse the data.

 Conclusions from discussion on table data:

o Retain the existing table structure currently implemented in DIGGS.

o Consider restructuring the handling of geophysical data to be consistent with the rest of

DIGGS so that all table data is uniformly captured. This might require a departure from

WITSML as is currently implemented.

o DIGGS will need to rely upon schematron to validate the block data.

o Need to resolve the issue of defining canonical values in codelists so that software

vendors can effectively parse table data and clearly identify the meaning of the “columns”

of data.

 Discussed the issue of codelists further, since the codelists are needed in order to identify the

data within the table data block.

o DIGGS currently uses the GML Dictionary to manage codelists. For example, in DIGGS

V1.0a a dictionary file (agsCodeList_V1.xml) is provided and lists all the types of

measurements one might do for CPT. The terms are specific to UK-AGS practice. US,

French, or other region’s practices may use different terms. How does a software vendor

discern, for example, what “tip resistance” is in the French codelist?

o Codelists can be maintained on any server by any data generator. DIGGS instances can

refer to those “external” codelists.

o Possible solution:

 Use method other than GML dictionary.

 Define canonical (standard set) values.

http://www.diggsml.com/monitoring-and-samplingpoint-object-part-3
http://www.diggsml.com/monitoring-and-samplingpoint-object-part-4

DIGGS V2.0.a Documentation

 Page 236

 Implement XML Classification Scheme/Node that supports external identifiers.

Burggraf said he can generate this automatically if provided with the various

codelists (“havest” the codelists).

 ACTIONS:

o Identify “next steps” in the next meeting.

E.7 Teleconference Meeting Notes 2010-02-04

Date: February 4, 2010

Time: 7:30 AM – 9:15 AM (PST)

Participants: Loren Turner

 David Burggraf

 Chris Bray

Not Available: Dan Ponti

 Scott Deaton

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 David updated us on progress this past week:

o GML namespace changed from “http://www.opengis.net/gml” to

“http://www.opengis.net/gml/3.2”

o The derivation from gml:AbstractFeatureCollectionType is removed from the

diggs:DiggsType, which is now derived from gml:AbstractFeatureType with

“diggs:featureMember” property elements. This follows the GML 3.2 feature collection

pattern.

o All abstract elements with names starting with “_*” are changed to the names “Abstract*”.

All the references to these abstract elements are accordingly changed to the names

“Abstract*”

o All components from GML 3.1 that were deprecated are removed from the GML 3.2

profile (e.g. gml:coordinates element).

 gml:pos and gml posList has replaced gml:coordinates

 New DIGGS profile forces use of gml:pos and gml posList.

 gml:coordinates had supported custom delimiters, but that’s been eliminated.

 gml:pos and gml posList forces use of standard delimiters.

 Discussed new gml:id attribute and gml:identifier element:

o Every feature and geometry has to have a gml:id attribute.

<gml:LineString gml:id="LS001" rsName="urn:ogc:def:crs:EPSG::4326">

<gml:pos>0 0</gml:pos>

<gml:pos>1 1</gml:pos>

</gml:LineString>

o Wasn’t required in GML 3.1.

DIGGS V2.0.a Documentation

 Page 237

o Will notice in data instances.

o Does not have to be globally unique.

o DIGGS id pattern is currently applied.

o gml:id attribute is mandatory on all objects that derive from gml abstract types.

 May change between different generations of the same file

 Does not need to be unique globally

o gml:identifier element used to identify holes

 Doesn’t change

 Unique

o Implementation:

 Where we had used diggs:id before, replace with gml:identifier.

 gml:identifier is used for the main digs objects (e.g. project, hole, sample, test)

 gml:identifier has pattern restrictions

 Diggs objects with gml:identifier should also have a corresponding gml:id.

Recommend that the same name for the id be used.

 gml:id is used for all referencing within document, linking various objects

 gml:id is used for database handles

 gml:id has no pattern restrictions

 Codelists

o Burggraf recommends adopting Registry Information Model (RIM) coding from OASIS.

Example of this was provided in email status update.

o Similar to current codelist implementation.

o DIGGS would host a codelist using XML schema/nodes file that establishes a single

name for something as well as lists the alternate descriptions for it (e.g. in different

languages) and the other names for that same thing.

o For DIGGS, we would have this single file hosted on DIGGS website:

 Use version system and release corresponding to the version of DIGGS.

 The file would establish the primary DIGGS names of everything in the current

codelists.

 We would define the alternate names for the same thing to satisfy UK-AGS and

US practices in this first release.

 This allows software vendors to claim DIGGS compliance with a specific version

corresponding to a specific codelist.

 Next steps:

o Recast DIGGS examples into new schemas (20 examples)

o Next week, evaluate the examples and make sure they validate.

o More work on inheritance – after reviewing examples.

o Revisit discussion on codelists with Ponti and Deaton.

E.8 Teleconference Meeting Notes 2010-02-11

Date: February 11, 2010

Time: 7:30 AM – 9:55 AM (PST)

Participants: Loren Turner

DIGGS V2.0.a Documentation

 Page 238

 David Burggraf

 Chris Bray

 Dan Ponti

 Scott Deaton

Not Available:

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Continuation of codelist discussion:

o Team reached consensus on implementing Registry Information Model (RIM) approach

for codelists.

o A single RIM xml file will contain all codes for DIGGS. This file will have a version,

consistent with DIGGS release, and will be hosted on the DIGGS site with the schema

files.

o The file will be needed in order to validate DIGGS instances, similar to the schema.

o The RIM codelist will contain single canonical values defined as the ClassificationNode

(e.g. “tip”). Multiple descriptions are supported for different languages or domains.

ExternalIdentifiers are used to identify alternative names for the ClassificationNode (e.g.

“tipResistance” or “coneResistance”).

o DIGGS instances will only use the ClassificationNode (e.g. “tip”). Software that reads

DIGGS files can reference the RIM file to discover descriptions or alternative terms for

the ClassificationNode. However, use of the RIM file for that purpose isn’t required.

o RIM file is used to identify list of valid names in a list, similar to a codelist.

o Software developers need only know the valid ClassificationNode values to successfully

map to/from DIGGS files.

o Schematron or other external validation tool would need to be used to assess if the

values used in a DIGGS instance conforms to the RIM file values. Schema validation

alone cannot accomplish this.

o RIM approach forces interoperability. Prior approach with codelists in V1.0a presented

issue where values could be published outside of DIGGS domain.

DIGGS V2.0.a Documentation

 Page 239

o We need to identify the canonical values and lists that are in common from the existing

codelists in DIGGS.

o Need to harmonize these two existing lists:

 DIGGS codelist (codelists_V1.xml)

 AGS codelist (agsCodeList_V1.xml)

o Burggraf has done this using the existing codelists and has created a RIM file.

o Pick through schema and ensure all places in schema where codelists are needed.

o ACTION ITEM: Turner will organize meeting of domain experts to:

 Evaluate RIM codelists element by element.

 Combine elements from other codelists where applicable.

 Identify rules for when codelists are used, and where we should use

enumerations or other techniques.

 Status update from Burggraf:

o Continuing to work on converting 20 examples.

o ACTION ITEM: Will send RIM file (and style sheet) to team to look at.

o ACTION ITEM: Will prepare example of RIM implementation with DIGGS instance – use

a couple of instances from the 20 examples (e.g. a CPT example and a borehole

example).

 Ponti suggests working on structural issues first (see notes from 1/28/10 – Turner action item to

organize meeting of four software vendors.)

 How do we know when we’re done with v1.1?

o Finish the 20 examples.

o Identify remaining issues.

o Run GML SDK to detect violations.

o Summarize the efficiencies (reduction in complexity) realized in this new version –

reduction in schema size, number of schemas, includes/imports, schema load time, auto

instance generation, etc.

o Instances open in Altova, Oxygen, and Stylus with no need for special configuration.

 Next meeting:

o Discuss the CRS issue.

o Discuss inheritance and where this can be minimized.

o Discuss the 20 examples.

E.9 Teleconference Meeting Notes 2010-02-18

Date: February 18, 2010

Time: 7:30 AM – 11:00 AM (PST)

Participants: Loren Turner

 David Burggraf

 Chris Bray

 Dan Ponti

DIGGS V2.0.a Documentation

 Page 240

Not Available:

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Burggraf presented the 20 examples.

o Lots of work to convert due to schema changes due to GML 3.2 and object-property

rules.

o Ponti asked why does <address> need to be a GML object here? Doesn’t have

geometry, so why does GML app need to recognize this?

 Burggraf explained:

 <address> is the property

 <digs:Address> is the object

 Need this construct in order for GML apps to recognize this properly.

 Can do it either as a GML object, or not, like this

 Example: for <address>, if we were to break down <street> into a couple of

elements, we’d need a new GML object and property, which requires a gml:id

and gml:identifier for the street.

 Ponti suggests we reconsider which items should be GML objects. Where is it

redundant to have GML objects? Are there places where nested GML objects

can be converted to regular XML complex types? Have this part of the domain

discussion.

o GML Feature vs. Object

 A GML “feature” is a physical entity, represents something in the real world.

 A GML “object” can represent something in a real world, but not important

enough to be passed around alone.

 GML features require gml:identifier, but GML objects do not.

 GML features and objects require gml:id.

 Complex XML elements don’t require either.

 ACTION: Review features and objects and determine is we have that right.

DIGGS V2.0.a Documentation

 Page 241

 Ponti, Bray, Turner to do this by email, and have telecon if needed.

 Burggraf will generate a list of the features and objects; will note parent

property for the objects.

 Team will review list and identify where changes are needed.

 Some objects could probably be changed to complex types.

 Prepare recommendation for Burggraf.

 This will be for DIGGS v1.2

o In the examples, all features and objects have gml:identifiers.

 ACTION: Burggraf will change the examples to remove gml:identifier for objects

to be consistent with prior discussion on the requirements for use of gml:identifier

and gml:id. gml:identifier should not be there for the objects. This change

needed for v1.1.

o Referencing:

 Schema had this construct:

 Burggraf notes:

 Not allowed in GML to comply with object-property rule.

 Revised implementation:

 <Item> is now separated from <itemRef>

 Ponti notes that we rarely have instances where we have inline content and

referencing.

 Ponti suggests that for <grouping> we require only references, no inline content.

 Burggraf needs a list of elements where we want to restrict the use of inline

content and references.

 Can deliver this in a spreadsheet.

 Every GML complex property has this construct.

 This will be for DIGGS v1.2

 Burggraf prepared the RIM file:

o Thought he captured all the codelists.

o Will do checksum to verify.

DIGGS V2.0.a Documentation

 Page 242

 CRS issue:

o Currently implemented as:

o Burggraf noted problems:

 The xlink:href is currently under the CoordinateSystemAxis, and shouldn’t be.

 defaultCRS is inline when should be referenced.

o In order to implement depth in a hole in GML 3.2, we’d need to create individual objects

for each depth. Burggraf showed an example where showing a single depth could result

in a dozen lines of elements. This is how GML 3.3 would do it. The example included

lots of xlink:href links.

o Can collapse to:

o Can also make the curveRef and uom as optional, and the defaults would be used.

DIGGS V2.0.a Documentation

 Page 243

o Here’s how it would be implemented as a <top> element:

o Note that the first two lines would replace the lower nested structures.

o ACTIONS: Burggraf will:

 Eliminate MultiCurve, since DIGGS only uses LineStrings, Points, Polygons,

Planes, and Volumes.

 Take a look at how GeoSCIml handles all this.

 Develop an example implementation of the GML 3.3 implementation in a

compact encoding with default settings. Discuss the example at next week’s

meeting.

 Consider that DIGGS will need to capture more than just linestring positions.

 Next meeting agenda:

o Review revised examples that address:

 Revised CRS structure.

 Fixed gml:identifier issue.

o Review validation of RIM files --- results of the checksum exercise.

o Follow up on DIGGS v1.1 testing – How do we know when we’re done with v1.1?
 Finalize the 20 examples.
 Identify remaining issues.
 Run GML SDK to detect violations.
 Summarize the efficiencies (reduction in complexity) realized in this new version

– reduction in schema size, number of schemas, includes/imports, schema load
time, auto instance generation, etc.

 Instances open in Altova, Oxygen, and Stylus with no need for special

configuration.

o Discuss inheritance and where this can be minimized – maybe

E.10 Teleconference Meeting Notes 2010-02-25

Date: February 25, 2010

Time: 7:30 AM – 10:00 AM (PST)

Participants: Loren Turner

 David Burggraf

 Chris Bray

DIGGS V2.0.a Documentation

 Page 244

 Dan Ponti

Not Available:

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Report from Burggraf:

o The code list check sum passed – there are 53 code-list classification schemes in the
XML registry package encoding and 53 code-list files in the directory:
DIGGS\1.0a\source\Codelists\default

o The ‘gml:Multi’ geometries have been removed and replaced with gml:Point,
gml:LineString, gml:Polygon geometries
 The ‘geometry’ property has not yet been changed to either
 GML profile only has these three.
 Will add “composite surface” to the profile to handle surfaces that are made up

of multiple polygons or multiple lines.
 We can restrict features to specific geometries.

 For example, force boreholes to be line strings.

 For project features, can be point or bounding polygon, or bounding
surface. Project features are not required.

 ACTION: Implement restrictions to geometry types:
o Turner, Bray, Ponti review feature table provided by Burggraf

(DIGGS_FeatureTable.htm) and define which type of geometry
applies, and if required or not. Add two columns to the table to
list the applicable geometries and the requirements.

o Burggraf will add composite surface as an option for the
geometry .

o Burggraf will implement the result of feature table work to
enforce in gml profile and schema.

 Piles have different geometries that change with depth. Can capture the cross-
sections as polygon geometries that change over depth.

 A “composite curve” requires an end-to-end connection with no branching.
Not needed at this point. Use groupings.

 A “multi curve” would handle the situation, for example, where multiple bores
in the same hole that go different directions at the bottom. Not needed at this
point. Use groupings.

o I’ve taken another stab at the ID issue in the DIGGS schemas and data. So far I have
generated the data examples that have:
 A gml:id value (random id value representing a DB handle, unique within the

XML documents only) for all objects and features, for the mandatory gml:id
attribute in GML 3.2

 A gml:identifier property element for all identifiable features, i.e. elements that
derive ultimately from diggs:IdentifiedFeatureType or
diggs:IdentifiedObjectType (note that these are both GML Features, i.e. they
derive from gml:AbstractFeatureType)

DIGGS V2.0.a Documentation

 Page 245

 No gml:identifier property element for all GML Objects that are not identifiable
Features (as described above).

o There are some important schema design choices to make that have varying degrees of
enforcement of the above practice for generating the data. First, I need to point out
what objects the DIGGS schemas have and then I’ll need some clarification of the intent
of these objects:
 diggs:AbstractDiggsObject, diggs:DiggsObject, diggs:AbstractDiggsBase,

diggs:DiggsBase: These are currently typed as a GML Feature (i.e. derive from
gml:AbstractFeatureType). Should these be typed as a mere GML Object? I.e.
derive from gml:AbstractGMLType and not gml:AbstractFeatureType? Is it
alright if these elements do not have a gml:identifier?

 diggs:AbstractIdentifiedObject: This is currently typed as a GML Feature. It
seems clear that the intention is to have a mandatory gml:identifier on these
elements (should these be typed as a mere GML Object? I.e. derive from
gml:AbstractGMLType and not gml:AbstractFeatureType?)

 diggs:AbstractFeature: This is currently typed as a GML Feature. Is it alright if
these elements do not have a gml:identifier?

 diggs:AbstractIdentifiedFeature: This is currently typed as a GML Feature. It
seems clear that the intention is to have a mandatory gml:identifier on these
elements.

 Several elements (e.g. diggs:Adddress) in the substitutionGroup
“gml:AbstractGML” (originally in substitutionGroup “gml:_Object” in 1.0a) that
derive from gml:AbstractGMLType. These are mere GML Objects (not GML
Features). Some of these may remain GML Objects and some may be demoted
to generic complex types as discussed in the last telecon.

o Currently I have taken the liberty of declaring gml:identifier:
 mandatory on diggs:AbstractIdentifiedObject and

diggs:AbstractIdentifiedFeature
 absent on diggs:AbstractDiggsObject, diggs:DiggsObject,

diggs:AbstractDiggsBase, diggs:DiggsBase, diggs:AbstractFeature
 absent on all elements that are mere GML objects (e.g. diggs:Address,

diggs:Role, etc)
o I’ll need feedback on the questions above and the assumptions about the gml:identifier

declarations I made above. Note that changes to the assumptions I made above will
likely have implications on the design of the Feature and Object hierarchy in the Diggs
schemas.

 GeoSciML uses a “coverage encoding” approach. It can be difficult for the reader to understand.

 Bray responded that entities to derive from one of three common bases:
o 'Object derived' (diggs:Object?) - Typed as GML Object, geometry optional, identifier

prohibited, transmission without context prohibited, identification outside instance
document impossible, identification inside instance document possible via gml:id (was
diggs:AbstractDiggsObject, diggs:DiggsObject, diggs:AbstractDiggsBase, diggs:DiggsBase)

o 'Feature derived' (diggs:Feature?) - Typed as GML Feature, geometry option, identifier
mandatory, transmission without context allowed, identification outside instance
document possible via gml:identifier, identification inside instance document possible

DIGGS V2.0.a Documentation

 Page 246

via gml:id or gml:identified (was diggs:AbstractIdentifiedObject, diggs:AbstractFeature,
diggs:AbstractIdentifiedFeature)

o 'generic complex type' - No GML, geometry prohibited, identified prohibited,
transmission without context prohibited, identification outside or inside instance
document impossible (many others, as identified)

o Although it's still a good idea if all diggs:* entities (that are not generic complex types)
to derive from either diggs:Object (which derives from gml:Object) and diggs:Feature
(which derives from gml:Feature) rather than gml:Object and gml:Feature directly.
Having a common root makes entity identification easier for consumers as well as
making it easier for consuming applications to attempt to deal with custom extensions
without having to implement the whole of GML.

 ACTION: Need to clean up where we use abstract types (prune the hierarchy).

o When reviewing the (DIGGS_FeatureTable.htm), examine the column “substitutes for”

column to determine if an abstract type is really needed.

o For example, Hole derives from AbstractHole, which derives from AbstractLocation. In

this case we could eliminate AbstractHole.

o Burggraf will eliminate a lot of the superfluous annotations throughout. Add another

column to the DIGGS_FeatureTable.htm to contain what the annotation field should be.

o Burggraf will convert DIGGS_FeatureTable.htm to an Excel spreadsheet and will add the

columns that we need to populate.

o Turner will post table on Google Docs for the team to edit.

 Burggraf suggested:

o We can merge the diggs:AbstractIdentifiedFeature and diggs:AbstractFeature hierarchies

as both should derive from GML Feature and have mandatory gml:identifier. If everyone

agrees, I'll replace the diggs:AbstractFeature substitution group with the

diggs:AbstractIdentifiedFeature substitution group.

o We can demote diggs:AbstractDiggsObject, diggs:DiggsObject,

diggs:AbstractDiggsBase, and diggs:DiggsBase to GML Object. If everyone agrees, I'll

have these derive from gml:AbstractGMLType and not gml:AbstractFeatureType

o ACTION:
 These are currently features and will be changed to objects.
 Burggraf will change the Excel spreadsheet before sending to us.

o We still need to decide whether several elements (e.g. diggs:Adddress) in the

substitutionGroup “gml:AbstractGML” (originally in substitutionGroup “gml:_Object”

remain GML Objects or be demoted to generic complex types as discussed in the last

telecon. The Feature and Object Tables, should help with this decision making.

E.11 Teleconference Meeting Notes 2010-03-04

Date: March 4, 2010

Time: 7:30 AM – 10:00 AM (PST)

Participants: Loren Turner

 David Burggraf

DIGGS V2.0.a Documentation

 Page 247

 Dan Ponti

Not Available: Chris Bray

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Edit the spreadsheet:

o ACTION: Ponti, Turner, Bray complete

o Determine if Abstract:

 Abstract – Will never appear in instance document. Meant only to be used as a

base type.

o Identify Type:

 Feature – Top level object at root of structure, shared. Identified with a

gml:identifier that would be globally unique in addition to a gml:id. (e.g. project,

hole, samples, business associates)

 Object – gml object, complex type, requires a gml:id, would never be passed

around on its own; always be nested in line with something; something else

would reference it; feature would reference it. (e.g. geometry, remarks)

 Complex – Complex element that has no gml:id; internal elements not

recognized as gml properties.

 Remove – Object is no longer needed.

o Determine if Metadata:

 Indicate: (Y) yes, entire object is metadata; (N) no; (C) contains simple elements

that are metadata

 Gml objects would by typed gml metadata.

 Would extend from AbstractMetadataType instead of AbstractGMLtype.

 GML applications could discover metadata.

 No significant structural change in an instance document

 ACTION: Ponti, Turner, Bray consider structural change to “group” metadata

elements into a metadata object, separate from the data elements similar to

cosmosDIGGS.

 Use of gml:identifier and gml:id.

o Recommended practice to use the same gml:identifier as the gml:id.

 Consider a formal way to construct the gml:identifier similar to the way the geometry is handled

(e.g. srsName="urn:ogc:def:crs:epsg:6.9:27700").

o For DIGGS gml:identifier, we’d have something like: “urn:diggs:fi:caltrans:diggsv1”

o Could also be used to point to dictionaries, for example, for color:

“urn:diggs:dict:munsel:colorcode”

o Follows a pattern:

 URN

 Namespace identifier (NID), e.g. diggs

 Object type, e.g. feature instance, dictionary, feature type

 Authority, e.g. caltrans

DIGGS V2.0.a Documentation

 Page 248

 Code (defined by the authority, unique to the authority)

 Typically used as the gml:id value

 Can be the code for a codelist item

o Can be used in xlink:href to reference various types of objects.

o Would need to submit a RFC (Request For Comment) to IANA (Internet Assigned

Numbers Authority).

 No cost – need to verify

 RFC process – Burggraf can draft

o Implementation:

o Can make the gml:id and gml:identifier the same (but doesn’t have to be):

o ACTIONS:

 Burggraf draft the RFC for the URN structure to be submitted to IANA.

 DIGGS organization (Turner) will submit to IANA.

 Make changes to implement pattern restrictions for gml:identifier for DIGGS v1.2.

 Burggraf will revisit code list encoding to use URN and email with any issues

identified.

 Burggraf presented revised linear referencing approach. This was implemented in the Example

18 included in an email attachment on 3/3/10.

o Accommodates multiple linear referencing of a single hole.

o ACTION: Ponti will send Burggraf example WITSML data instance (blocks of data) to

see how the new linear referencing would encoded it.

 ACTION: Punchlist to deliver DIGGS v1.1

o Implement linear referencing approach.
o Revise the 20 examples.
o Run GML SDK to detect violations.
o Summarize the efficiencies (reduction in complexity) realized in this new version --

reduction in schema size, number of schemas, includes/imports, schema load time, auto
instance generation, etc.

o Verify that instance documents open in Altova, Oxygen, and Stylus with no need for
special configuration.

o Generate online documentation.
o CoreSIG meeting to present changes in DIGGS v1.1. (Proposed 3/18/10)

 ACTION: Project status
o Burggraf will send update on billing and hours to date.
o Skip telecon next week. Reschedule for early following week.

E.12 Teleconference Meeting Notes 2010-03-16

Date: March 16, 2010

Time: 7:30 AM – 9:30 AM (PST)

Participants: Loren Turner

 David Burggraf

DIGGS V2.0.a Documentation

 Page 249

 Dan Ponti

Not Available: Chris Bray

Agenda: DIGGS-Galdos technical meeting.

Notes:

 Ponti presented two proposed changes to the schema (both documented in his email on 3/15/10):

o Create metadata groupings in base types – from Dan’s email:

“2) Created two element groups - FeatureMetaDataProperties and

TestMetaDataProperties. The FeatureMetaDataProperties group contains

three elements - a) associatedFile b) roles and c) remark.

associatedFile is of type gml:referenceType; roles is an object-

property type that contains role objects, and remark is a

gml:stringOrRef type - to reference either a remarks object or hold a

simple string. Added associatedFile and remark object-properties to

Project (eg. these features are maintained at the Project leve).

FeatureMetaDataProperties added to AbstractFeature and

AbstractNamedFeature only (not in objects). TestMetaDataProperties

contains references to equipment and specificatilona and is added to

diggs:TestType. TestType is made abstract. Probably should rename to

AbstractTestType to conform with the abstract element as I did with

objects and features, but I didn't want to fix all of the broken

references...”

o Removing redundant abstract elements.

“10) Removed many, but not all Abstract objects and features in the

kernal and geotechnical namespaces where not needed. Abstract objects

were deleted when they only had one single concrete object/feature

defined as a substitution.. There is still much cleaning up to do with

these.”

 General concurrence from Turner and Burggraf on these two proposed changes.

 ACTION: Bray review proposed changes.

 For metadata grouping change, Burggraf will provide Ponti with “input schemas”. Ponti will

implement the metadata grouping in schemas, as proposed, and return schemas to Burggraf,

who will run scripts to implement.

 For removing abstract elements, David will do this via scripting using logic whereby Abstract

objects will be deleted when they only had one single concrete object/feature defined as a

substitution.

 Other suggestions proposed by Ponti will be discussed at Thursday’s meeting.

 Burggraf still needs geometry column completed in the spreadsheet in order to complete v1.1.

 DIGGS v1.1 likely delayed by a week due to these changes.

E.13 Teleconference Meeting Notes 2010-03-18

Date: March 18, 2010

DIGGS V2.0.a Documentation

 Page 250

Time: 7:30 AM – 10:45 AM (PST)

Participants: Loren Turner

 David Burggraf

 Dan Ponti

Not Available: Chris Bray

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Modification of the “input” schemas to remove inline or reference elements where we want to limit

the use to one or the other.

o Use input schemas.

o Comment out elements to be deleted.

o Scripts will not carry over comments.

o Script will look for complex type for which no element uses it.

o ACTIONS:

 Burggraf will modify (with abstract elements removed) and send new input kernel

schema (3/19)

 Ponti will edit and comment (3/25)

 Burggraf will re-run scripts (3/26)

 Implement metadata grouping discussed earlier for roles, associated files, specifications, and

equipment.

o ACTION:

 Ponti to comment these changes in the input schema.

 Burggraf to modify scripts to implement.

 Scripting had produced reference types with annotations and 1:1 corresponding elements. These

types were based on gml:ReferenceType. Suggestion to eliminate the reference types, change

to gml:ReferenceType, then move the annotations to the element level.

o Use gml:ReferenceType for most. Use diggs:ReferenceType when the index and

percentage is applicable.

DIGGS V2.0.a Documentation

 Page 251

o Move the <annotation><appinfo> to the element level which includes target info.

o Annotate either the type or the element, but typically not both. Burggraf will check to

make sure the annotation

 Handling remarks as string or inline or reference:

o GML doesn’t support the “string or an object” construct. It would be mixed content and

difficult to map from a database.

o Could create a <remark> property, with three elements who/when/what, the what is the

only required, object within a remarks. Cons – need a gml:id;

o Bray stated it needed a gml:identifier in an earlier email. Is a gml:id sufficient?

o ACTION: Dan will document the various options discussed in the meeting (to keep

remarks inline) and email to the group for further consideration.

 Choice of remarks property or object

 “Flatten” remarks – create complex content, make who/what/when elements

 Positional accuracy property – suggest to add this as optional metadata to geometry.

o Treat as metadata.

o Consider adding a positional accuracy metadata element to a base type.

o Leave it as-is for DIGGS v1.1.

 Completion of spreadsheet?

o Not as relevant for v1.1 any longer.

o Scripting work and changes made to input schemas will address most issues.

o Feature vs. Object – can resolve this for v1.2.

 Status of DIGGS v1.1 release.

o Complete input schema changes and run scripts as above.

o Run validation.

o Create documentation.

o Update example instances.

o Finish input schema mods (3/25)

o Finish v1.1 by end of March (3/26)

o Another week to wrap up everything else (4/9)

E.14 Teleconference Meeting Notes 2010-03-25T07:30

Date: March 25, 2010

Time: 7:30 AM – 10:30 AM (PST)

Participants: Loren Turner

 David Burggraf

 Dan Ponti

DIGGS V2.0.a Documentation

 Page 252

Not Available: Chris Bray

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Discussed approach for divorcing position information in the schema:
o Positions of observations at location features are defined in the context of that

location feature
 Eg. for a hole, positions are defined by measured depth – either at a point in

the hole or an interval that defines a segment of the hole centerline.
o These positions are defined by the location, not by the observation itself, and

therefore can logically be coded as a property of the location feature, and not of the
observation,

o Divorcing positions from observations will make extensibility easier and allow for
easy re-use of of observation features.

 Dan will work on an example implementation.

 Example of schema with this implementation:

<Hole gml:id = “h1”>

 <centerline>

 <gml:LineString xmlns:gml="http://www.opengis.net/gml/3.2"

 srsName="urn:ogc:def:crs:epsg:6.9:27700" srsDimension="3" gml:id="cl_BH18">

 <gml:posList>407829 268621 23.93 407415 268600 8.43</gml:posList>

 </gml:LineString>

 </centerline>

< linearReferencing>

 < PositionExpression gml:id="PE001">

…….

 </PositionExpression>

</linearReferencing>

<measuredDepths>

 <MeasuredDepths gml:id = “md1”>

 <md>

DIGGS V2.0.a Documentation

 Page 253

 <gml:Point gml:id="d1e483" srsName="#PE001" srsDimension="1">

 <gml:pos>0</gml:pos>

 </gml:Point>

 </md>

 <md>

 <gml:Point gml:id="d1e484" srsName="#PE001" srsDimension="1">

 <gml:pos>15</gml:pos>

 </gml:Point>

 </md>

 </MeasuredDepths>

 </measuredDepths>

 <depthIntervals>

 <DepthIntervals gml:id=”di1”>

 <di>

 <gml:LineString gml:id=”dil-1” srsName=”#PE00l” srsDimension=”1”>

 <gml:posList>5 7.5</gml:polList>

 </gml:LineString>

 </di>

 </DepthIntervals>

 <depthIntervals>

</Hole>

<SamplingActivity gml:id=”samp1”>

 <gml:identifier>urn:diggs:fi:usgs:samp1<gml:identifier>

 <position xlink:href=”#dle484”/>

 …

</SamplingActivity>

 Discussed how this new schema approach would facilitate implementation of trench

logs and similar features.

DIGGS V2.0.a Documentation

 Page 254

 Can reuse features like samples without having to create new sample features that

support specific geometries.

 Discussed method of defining geometry for trench logs and exposures.

o Field practices:

 Establish origin in upper left of trench wall

 Create grid

 Map relative to grid

 Grid face is roughly vertical

o To model this in schema:

 Establish “depth curve”

 Create “offset curve”

 “point”, “area perimeter”, and “linear shape” features can then be

identified.

DIGGS V2.0.a Documentation

 Page 255

DIGGS V2.0.a Documentation

 Page 256

E.15 Teleconference Meeting Notes 2010-03-25T10:30

Date: March 25, 2010

Time: 7:30 AM – 10:30 AM (PST)

Participants: Loren Turner

 Dan PontI

 Chris Bray

 Salvatore Caronna

 Roger Chandler

 Scot Weaver

 Scott Deaton

Not Available: n/a

Agenda: DIGGS software vendors meeting.

Notes:

 Summary of work to date on DIGGS v1.1
o Fixed gml Object-Property rule

 Example of object property rule.
<Diggs xmlns="http://schemas.diggsml.com/1.0a" xmlns:gml="http://www.opengis.net/gml/3.2"

 xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:witsml="http://www.witsml.org/schemas/131" xmlns:diggs="http://schemas.diggsml.com/1.0a"

 xmlns:diggs_geo="http://schemas.diggsml.com/1.0a/geotechnical"

 xmlns:diggs_env="http://schemas.diggsml.com/1.0a/environmental"

 xmlns:diggs_mon="http://schemas.diggsml.com/1.0a/monitoring"

 xmlns:diggs_pil="http://schemas.diggsml.com/1.0a/piling" gml:id="d1e1"

 xsi:schemaLocation="http://schemas.diggsml.com/1.0a ../../Complete.xsd">

 <businessAssociates>

 <BusinessAssociate xmlns:gml="http://www.opengis.net/gml/3.2" gml:id="d1e5">

 <gml:name xmlns="">Bill Mallard</gml:name>

 <gml:identifier codeSpace="DIGGS" xmlns="">DIGGS-BM</gml:identifier>

 <address>

 <Address gml:id="ad123">

 <street>345 Middlefield Road</street>
 <city>Menlo Park</city>

 <state>CA</state>
 <postalCode>94025</postalCode>

 </Address>

 </address>
 </BusinessAssociate>

 </businessAssociates>

o Fixed import/includes – no longer need OASIS catalog.
 Seconds to load schemas
 No special configuration needed with tools.

o Migrated DIGGS to GML 3.2
 ISO standard

o GML profile created for DIGGS
o Reorganized to 5 namespace schemas with one file per namespace
o gml:identifier and gml:id

 Dropped diggs:id

DIGGS V2.0.a Documentation

 Page 257

 gml:identifier for globally unique id (use URN); only applies to gml features
(locations, projects, samples, layer systems, tests)

 gml:id required for all features and objects for referencing (database handle);
objects are complex types that are “recognized” as properties in gml.

 Use of GML identifier (URN encoding)

 For DIGGS gml:identifier, we’d have something like:
“urn:diggs:fi:caltrans:diggsv1”

 Could also be used to point to dictionaries, for example, for color:

 “urn:diggs:dict:munsel:colorcode”

 Follows a pattern with components separated by “:”
o URN
o Namespace identifier (NID), e.g. diggs
o Object type, e.g. feature instance, dictionary, feature type
o Authority, e.g. caltrans
o Code (defined by the authority, unique to the authority)

 Typically used as the gml:id value

 Can be the code for a codelist item
 Can be used in xlink:href to reference various types of objects.
 Would need to submit a RFC (Request For Comment) to IANA (Internet

Assigned Numbers Authority).
 No cost – need to verify.
 RFC process – Galdos will facilitate this.
 Implementation – can make the gml:id and gml:identifier the same (but doesn’t

have to be).
o Removed unnecessary abstract types
o Implemented RIM for codelists in lieu of gml dictionaries.

 Allows for single vocabulary with translations.
 Consolidates DIGGS codelists.
 “Nodes” become the single identifier in the DIGGS file. Naming systems and

localization for language included.
 Example of RIM encoding for codelists:

<rim:ClassificationScheme id="urn:x-diggs:def:code-list:driven_penetration_test_type" lid="urn:x-

diggs:def:code-list:driven_penetration_test_type" objectType="urn:oasis:names:tc:ebxml-

regrep:ObjectType:RegistryObject:ClassificationScheme" status="urn:oasis:names:tc:ebxml-
regrep:StatusType:Submitted" isInternal="true" nodeType="urn:oasis:names:tc:ebxml-

regrep:NodeType:UniqueCode">

 <rim:Name>
 <rim:LocalizedString xml:lang="en" value="Driven Penetration Test Type" />

 </rim:Name>

 <rim:Description>
 <rim:LocalizedString xml:lang="en" value="AGS" />

 </rim:Description>

 <rim:ClassificationNode id="urn:x-diggs:def:code-list:driven_penetration_test_type:s" lid="urn:x-
diggs:def:code-list:driven_penetration_test_type:s" objectType="urn:oasis:names:tc:ebxml-

regrep:ObjectType:RegistryObject:ClassificationNode" status="urn:oasis:names:tc:ebxml-

regrep:StatusType:Submitted" parent="urn:x-diggs:def:code-list:driven_penetration_test_type" code="S"
path="/urn:x-diggs:def:code-list:driven_penetration_test_type/S">

 <rim:Name>
 <rim:LocalizedString xml:lang="en" value="S" />

 </rim:Name>

 <rim:Description>
 <rim:LocalizedString xml:lang="en" value="SPT Split spoon" />

 </rim:Description>

 </rim:ClassificationNode>
 <rim:ClassificationNode id="urn:x-diggs:def:code-list:driven_penetration_test_type:c" lid="urn:x-

diggs:def:code-list:driven_penetration_test_type:c" objectType="urn:oasis:names:tc:ebxml-

regrep:ObjectType:RegistryObject:ClassificationNode" status="urn:oasis:names:tc:ebxml-
regrep:StatusType:Submitted" parent="urn:x-diggs:def:code-list:driven_penetration_test_type" code="C"

path="/urn:x-diggs:def:code-list:driven_penetration_test_type/C">

 <rim:Name>
 <rim:LocalizedString xml:lang="en" value="C" />

 </rim:Name>

DIGGS V2.0.a Documentation

 Page 258

 <rim:Description>

 <rim:LocalizedString xml:lang="en" value="SPT Cone" />
 </rim:Description>

 </rim:ClassificationNode>

 </rim:ClassificationScheme>

o Tabular data
 Retain existing structure, but implement code lists (in RIM) in v1.2 to restrict

column types.
 Removed generic table property.
 Tables to be included under specific test features only.

o Geometry
 DIGGS V1.0a had generic geometry. DIGGS v1.1 restricts geometry bases on

the feature.
 Projects can have three types of geometry – reference point, linear extent, areal

extent.
 Linear referencing – gml method to reference positions in a borehole will be

adopted in gml 3.3.
 Example:

<Hole xmlns="http://schemas.diggsml.com/1.0a/geotechnical" gml:id="d1e96">

 <gml:identifier codeSpace="DIGGS">DIGGS-BH18</gml:identifier>

 <diggs:linearReferencing>

 <!-- the PositionExpression element contains the Linear Referencing definition and only needs to appear

once in the scope of a feature or feature collection -->

 <diggs:PositionExpression gml:id="PE001">

 <diggs:linearElement xlink:href="#cl_BH18">

 </diggs:linearElement>

 <diggs:lrm>

 <diggs:LinearReferencingMethod gml:id="LRM001">

 <diggs:name>chainage</diggs:name>

 <diggs:type>absolute</diggs:type>

 <diggs:units uom="m"/>

 </diggs:LinearReferencingMethod>

 </diggs:lrm>

 </diggs:PositionExpression>

 </diggs:linearReferencing>

<construction>
 <CylindricalConstruction gml:id="d1e481">

 <gml:identifier codeSpace="DIGGS">DIGGS-CC2</gml:identifier>

 <top>
 <gml:Point gml:id="d1e483" srsName="#PE001" srsDimension="1" uomLabels="m">

 <gml:pos>0</gml:pos>

 </gml:Point>
 </top>

 <base>

 <gml:Point gml:id="d1e489" srsName="#PE001" srsDimension="1" uomLabels="m">
 <gml:pos>15.5</gml:pos>

 </gml:Point>

 </base>
 <type>Cable Percussion</type>

 <diameter uom="mm">150</diameter>

 </CylindricalConstruction>
 </construction>

</Hole>
 Galdos proposed a GML referencing model (that’s being proposed for use in

DIGGS) to OGC which was adopted and should be in GML 3.3.
o Metadata

 AssociatedFiles, Roles, Remarks, Specifications, Equipment,
BusinessAssociates, Contracts are cast as gml metadata so that gml aware
applications will recognize those objects as metadata.

 No longer assigning metadata properties at the base level to prevent recursion.
 All features carry associatedFile, roles, and remarks metadata properties.
 All objects carry remarks metadata properties.

DIGGS V2.0.a Documentation

 Page 259

 All tests are features and carry specifications and equipment metadata properties
as default.

 More work needed on this for v1.2.

 Necessary tasks for DIGGS v1.2
o Codelists need to be fleshed out; more explicit definitions are required.
o Tighten up object and feature designations. Possibly demote some objects to complex

types.
o All properties and features in the schemas need to be annotated.
o Identify business rules to be implemented in Schematron.

 Business rules (Caronna).
o Roger Chandler, Will Holmes, Salvatore Caronna, Scott Deaton met.
o Need to come up with business rules and mechanism to come up with them.
o Four levels of business rules identified:

 Level 1 – Enforcing definitions as they appears in DIGGS, e.g.:

 The concatenation of the key values must be unique for each record.

 Within a layer system, layers cannot overlap nor can there be gaps.

 Level 2 – Impossible data, e.g.:

 Total core recovery < RQD

 Bottom depth > Top depth

 Level 3 – Warnings on relationships.

 Level 4 – Warnings, out of reasonable range, e.g.:

 Permeability = 10 cm/sec

 Dry Density = 140 pcf

o Recommend pursuing Level 1 issues first using schematron.

 Rules encoded in files separate from the schema and instance files.

 Suggestion to use online forums to discuss rules.

o Need the business rules in “plain English” in order to specify the contract work needed for

the development of schematron.

 Turner needs enough info on business rules in order to write a scope of work for

a schematron contractor.

 List of rules

 Turner will set up discussion forum to facilitate discussion of rules.

o Will need more info on “the concatenation of the key values must be unique for each

record.”

 What are the key values?

 What is getting concatenated?

 Look at the AGS model.

 What’s the uniqueness that needs to be enforced for every feature that requires a

unique key?

 Need to look at examples of DIGGS instances to identify.

 What combination of object properties need to be unique?

 Use annotation within the schema to flag “key fields”.

 Future vision of DIGGS (Bray) – gml:identifier enables “atomic features” for DIGGS.
o Samples, holes, and other features can be transmitted independently.
o Enables DIGGS features to be self-contained.
o Web Feature Services (WFS) could be developed, for example, that returns collection of

DIGGS features.

 Proposed structural changes for DIGGS v1.2 (Ponti):

DIGGS V2.0.a Documentation

 Page 260

o Add solid and composite area geometries to project.
o Sample and Sampling Activity – separate the physical sample from the activity that

produces it.
 Issues:

 Current sample feature conflates the physical sample with the activity
that produces it.

 Samples need to be transmitted without any info about the sampling
activity in order to preserve anonymity for blanks and standards

 Currently to do this, there is a generic source property that can reference
either another sample or a hole. Position (eg. depth) is still part of
Sample, so this info is still transmitted.

 Samples that are subsamples or aggregates require a kludge using
generic source property to indicate where sample came from, but this is
not a direct association – only information about a sample’s source.

 Generic source property is difficult to map to (non-specified target –
violates gml referencing rules that suggest target specification for
references in <appInfo> element.

 Recommended solution:

 Create a separate SamplingActivity feature as a child of the Diggs root

element

o SamplingActivity contains properties that references the position

and location to which it belongs; if the activity does not occur at a

specific position, (such as an aggregate or subsample) then it

references the Project only and the source sample ID’s in

properties specific for that purpose.

o SamplingActivity also contains info about the sampling activity

itself.

 Sample contains only info about the physical sample and chain of

custody information

 Sample references it’s parent sample activity only. No ambiguous

association reference.

 Advantages:

 Can account for an activity without a sample (eg. core run with no
recovery)

 Reduces duplication where a single activity creates multiple physical
samples.

 Aggregations and subsamples easily handled

 Sample objects themselves provide no information on how they were
obtained/created – perfectly blind.

 Disadvantages:

 Most practice conflates activities and physical samples; requires creating
2 features in xml for each sample record in a database

o Layer Systems – more specificity for classes of layer systems (interval data)

DIGGS V2.0.a Documentation

 Page 261

o Namespace changes:
 All samples, base types, and common types of locations placed in kernel.
 Geotechnical, environmental, and piling namespaces contain discipline-specific

tests and locations only.
 Intent is to reduce the likelihood for instance documents to have to use multiple

namespaces.

o Multi-track insitu tests (geophysical logs, CPT):
 Geophysical logs as type of insitu test.
 Currently considering using WITSML log structure for geophysical logs and

DIGGS table structure for CPT.
 Harmonize to a DIGGS namespace structure for both?
 Use WITSML for CPT?

o Divorce position information at locations from results of tests and observations
 Position information is inherent in the type of location feature where observations

are made and tests are run.

 Intent to provide better extensibility for different location types without
having to redesign observation features

 More compact position encoding
 Positions of observations at location features are defined in the context of that

location feature.
 Eg. for a hole, positions are defined by measured depth – either at a point in the

hole or an interval that defines a segment of the hole centerline.
 These positions are defined by the location, not by the observation itself, and

therefore can logically be coded as a property of the location feature, and not of
the observation.

 Divorcing positions from observations will make extensibility easier and allow for
easy re-use of of observation features.

o For the proposed schema changes (i.e. sampling and sampling activity, layer systems,
and divorcing position information), Ponti will create example instance documents to help
illustrate the impact of the change using a real example. Example instance documents
will use the existing 20 examples that were created earlier in AGS and DIGGS formats.

DIGGS V2.0.a Documentation

 Page 262

E.16 Teleconference Meeting Notes 2010-04-01

Date: April 1, 2010

Time: 7:30 AM – 8:10 AM (PST)

Participants: Loren Turner

 David Burggraf

 Dan Ponti

 Chris Bray

Not Available:

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Ponti status:

o Taking a little longer than anticipated to modify input schemas

o Lots of changes

o Main kernel file is finished and will send to Burggraf by end of this week.

 Burggraf:

o Will start working on schemas on Monday

o Should complete everything by end of next week

 Schema versioning

o Implementation:

 Will use version attribute on the root schema element <diggs/>.

 Will use namespace/filepath to determine version.

o Backwards compatibility – need to consider what this means.

 Manage changes in such a way that 'structural' changes require a minor version

number bump, whereby simpler changes only required a revision number bump.

So 1.1.1 and 1.1.2 would be compatible where 1.1.1 and 1.2.1 would not, this is

identified by the 1.1 and 1.2 at the start without the need for a longer version

number.

 This is similar to the versioning policy for all xml encoding standards at the OGC.

The DIGGS community should publish their own as well.

 Version defined by X.Y.Z:

 X is the major version number, meant for radical changes - no

backwards compatibility is guaranteed when this number changes.

 Y is the (first) minor version number, backwards compatibility is strongly

encouraged but not required. Changes in this number must be

accompanied by a change of namespace.

 Z is the 2nd minor version number, meant for corrigenda or bugfixes.

Backwards compatibility is implied and no change of namespace is

accompanied by a change in Z. Typically backwards compatible bugfixes

are treated at this revision level. Also clarification/annotation to the usage

of elements/types is included at this revision level

 Use of identifiers for “remarks” – will proceed with Ponti’s suggestion from prior meeting.

DIGGS V2.0.a Documentation

 Page 263

E.17 Teleconference Meeting Notes 2010-04-08

Date: April 8, 2010

Time: 7:30 AM – 8:10 AM (PST)

Participants: Loren Turner

 David Burggraf

 Dan Ponti

 Chris Bray

 Roger Chandler

Not Available:

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Ponti prepared the input schemas and delivered last Saturday.

 Ponti went through the “Closing the book on v1.1” email from 3/18/10 (attached). The group

concurred with recommendations.

 Burggraf needed to modify in order validate.

o No major issues

o Looks correct

o Lots of special cases needing changes in scripts

o Ran 2 or 3 scripts so far

o Should be done within a few hours

o Ponti will provide schema snippets for linear referencing for holes.

o Will pass back to Ponti to verify that changes were implemented.

 For 1.2 development, scripts will be run against the 1.1 version.

 Punchlist for 1.1 release

o Finish running the scripts (as above).

o Verification with Ponti.

o GML SDK check (prior check didn’t identify any GML issues).

o Documentation – automatic generation.

o What’s new in 1.1 document.

o Roll-out meeting for week of April 12.

DIGGS V2.0.a Documentation

 Page 264

All -

I was thinking about the loose ends to wrap up to close the book on 1.1. Here are a few and some suggested

pathways for now:

1) Feature/object determinations and their geometries:

We've dealt with some of these, but not systematically. David's scripting out of abstract elements will help with the

clutter of going through all of these. I would suggest that we deal with this in a blanket fashion for now, and then we

can look closer at this for 1.2:

1) Locations (eg. holes, sampling stations): FEATURES. For 1.1, derive these from abstract location types that carry

geometries consistent with location type (eg. holes derive from a linear location type).

2) Projects: FEATURES. For geometries in 1.1, I would suggest that project carry these three optional geometry

properties: a) referencePoint (gml:PointPropertyType), b) arealExtent (gml:SurfacePropertyType), and c)

linearExtent (gml:CurvePropertyType). We talked about defining solids for projects and composite areas as well,

but these geometries are not currently in our GML profile. We can revisit and add others if necessary for 1.2.

3) Samples: FEATURES - can be transmitted on their own, although for full context, one must know the location

where sample was taken or process by which sample is created. A current problem with samples is that it has a

generic source property(ies) that can reference any uncontrolled feature/object. For 1.2 I think we need to tighten

this up. One way to do this is to divorce the process of sampling from the sample itself so that samples can travel on

their own without revealing anything to a lab about how they were created, and the sampling activity feature can

then contain explicit references to either a position at a location, or to source samples.

4) LayerSystems: FEATURES. These could be objects, too, but layer systems apply to almost any location feature

and therefore could be referenced. We can debate this more. Currently, LayerSystem is an object and the child Layer

is a feature. This is backward. For 1.1, I would suggest making LayerSystem a feature, and Layer an object. Then

we can carry this debate into 1.2. For 1.2, I would like to see specific classes of layer systems. Right now they are

too open ended and confusing for average folk to get a handle on how to implement and encode.

5) In-Situ Tests: FEATURES. In-situ tests only occur in context of a particular location type (maybe there are a few

exceptions), and perhaps could be demoted to objects - now they are features because they extend from the same

base type as lab tests. Let's leave them that way for now. How we categorize use in-situ tests should be another 1.2

discussion. Geophysics are another in-situ test and we need to build the correct hooks in 1.2 for Witsml, if we

choose to stay with that schema design.

6) Laboratory Tests: FEATURES.

7) Groups. These are currently FEATURES held within a root level property type. Keep as is for 1.1, but -- are

groups metadata?

8) Tables. Tables are currently objects and should remain as such as this is a construct to be used as properties of test

results (eg. static cone, etc.) or other features. There is a tabularData property type to hold generic table data at the

root level. Table data should be encapsulated in the context of a test or other relevant feature - it doesn't belong here,

I don't think. For 1.1, I suggest we delete (eg. comment out) this property type at the Diggs level.Note - I'm not

suggesting that we drop the Table element or property type, just that we no longer carry a root level property that

only carries generic table objects.

DIGGS V2.0.a Documentation

 Page 265

For 1.1, for all of the features above:

a) leave the point property types that define top and base alone. They will work with the linear referencing property

type that David introduced. We can discuss more compact encoding options for 1.2, including divorcing positions

from tests and other observations. GML encoding of depth information for tabular data (eg. table data structure as

implemented for static cone tests, or via witsml for geophysical logs) needs to be handled differently and this will

take some thought and David's tutelage. I believe David suggested this could be done by typing the depth column as

a geometry and referencing the srsName to the lrm???. Anyway, we need to fix this to get geophysics and static

cone tests to work right - but this is 1.2.

b) All property type elements that now are contained within the above features should probably be converted to

objects. I believe that is the case for most of these already, if not all. Getting this issue buttoned up is a 1.2 exercise.

I don't think it's necessary and productive to hold up a 1.1 release for this at the present.

IF THERE IS AGREEMENT, I'LL MAKE ANY REQUIRED CHANGES TO THE INPUT SCHEMAS

THAT DAVID WILL SEND ME TO GET THE FEATURE CLASSES ABOVE PROPERLY TYPED AND

REFERENCED TO THE APPROPRIATE BASE TYPES, AND CARRY OUT THE OTHER

SUGGESTIONS I MENTIONED ABOVE FOR 1.1.

2) Metadata

The following Diggs objects can be classed as metadata:

1) AssociatedFiles

2) Roles

3) Remarks

4) Specifications

5) Equipment

6) BusinessAssociates - this is a weird one. BusinessAssociates are physical features, and can exist on their own, but

within Diggs' context, Business Associates are properties of roles, contracts and other metadata objects, they are not

direct properties of the Diggs features themselves.

7) Contracts

For 1.1: Type the above objects as metadata (change to derive from AbstractMetadataPropertyType).

As I discussed in my prior long e-mail from Monday, I suggest that metadata properties as above be placed in the

schema more judiciously than before to avoid unnecessary and irrelevant use of these properties, and to avoid

recursion. I suggested that we create two element groups - one that contains properties for associated files, roles and

remarks (or if we go with option 4 from my earlier e-mail, remarks would be a separate element group. This group

(FeatureMetadataProperties) is assigned to base Feature types only. Remarks would be assigned to base object types,

only. Specification and equipment properties would be ganged into another element group (TestMetadataProperties)

and attached to base test types (which also would carry the feature metadata as well). Other features that might use

equipment, say, (like a hole) would have those properties added to the concrete feature type only.

 IF THERE'S AGREEMENT, I'LL MAKE THE TYPE CHANGES AND MODIFY THE FEATURE AND

OBJECT BASE TYPES IN THE INPUT SCHEMA FILES TO IMPLEMENT THIS FOR 1.1.

3) Referencing

In keeping with Chris' desire to keep as much stuff inline as possible, for 1.1 we should eliminate as many

referencing properties as possible and require inline coding of property elements. Chris discussed the value of this

with remarks and WFS implementation and I provided some options that Loren, David and I discussed to do this.

There are some metadata properties, though, that I can see should be referenced, because to do otherwise will likely

result in lots of duplication of data within instances. These "shared" objects are AssociatedFiles, Roles,

DIGGS V2.0.a Documentation

 Page 266

Specifications, Equipment, and BusinessAssociates. So, properties that include these objects should exclusively use

gml:ReferenceType to point to an external object that would sit at the root level.

Since the above objects would be referenced only, those data would have to be transmitted in a Diggs object along

with the features that refer to them - something Chris wanted to avoid. So perhaps it would be worth revisiting

stringOrRefType again for these properties (not for remarks). I envision many use cases where references to

equipment, people, and specifications would be a simple string (eg. a person's name, or a standard test spec, or the

name of a piece of equipment), and therefore use of stringOrRef would allow compact encoding and that

information to be included inline and not referenced when detailed specs or business associates are not called for. I

mentioned that stringOrRefType is being deprecated in 3.2, but we could create an identical type in the diggs

namespace to do this.

Recommendation: For 1.1 any properties of features/objects that identify associated files, roles, specifications

or equipment be only of type gml:ReferenceType. We can continue the discussion about whether we'd want

to resurrect stringOrRef type for these properties.

Also for 1.1, to avoid any mandatory elements having to be "made up" to wrap a transmission of Diggs

features in the Diggs object, add a mandatory version attribute to the Diggs element. Modify the

transmissionInformation property of Diggs to be optional, and remove the version property from the

TransmissionInformation object.

IF THERE'S AGREEMENT, I'LL MAKE THIS CHANGE TO THE INPUT SCHEMAS. THEN SEND TO

DAVID TO RUN HIS SCRIPTS ON AND TEST TO MAKE SURE WE HAVE A VALID, GML

COMPLIANT APPLICATION SCHEMA. VERSION 1.1 WILL NOT BE AN IMPLEMENTABLE

SCHEMA QUITE YET, BUT IT WILL BE FAR EASIER FOR THE CORE SIG AND OTHERS TO BEGIN

TO EXAMINE AND PROVIDE INPUT TO A 1.2 VERSION.

4) GML profiling of geometry types

Our gml4diggs profile has restricted base GML object and feature types so that all GML objects do not inherit

unnecessary gml elements. However, such restrictions have not been placed on gml geometries. GML geometries

inherit from unrestricted gml base types and all of the elements come over into our types. David - for 1.1 can you

restrict gml: AbstractGeometry to remove the gml:StandardObjectProperties? Is doing so unwise?

E.18 Teleconference Meeting Notes 2010-04-15

Date: April 15, 2010

Time: 7:30 AM – 11:00 AM (PST)

Participants: Loren Turner

 David Burggraf

 Dan Ponti

 Chris Bray

Not Available: n/a

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

DIGGS V2.0.a Documentation

 Page 267

 First 1.5 hours – meeting for release of v1.1.

 ACTION: Burggraf needs to reconcile remaining v1.1 changes that Ponti sent this week.

o Needs to generate the instances to make sure they are valid.

o Inline and referenced elements caused issues with the examples.

 Can features be transmitted on their own?

o Doesn’t have to be at root level to be GML compliant.

o Ponti suggests having all features at the root level and use referencing.

 For example the hole is at the root level and references the project.

 If layers aren’t going to transmitted separately, maybe it should be an object

rather than a feature.

o Burggraf – WFS can serve any feature. Doesn’t have to be wrapped in the DIGGS

element. WFS can be set up to transmit the parent object too, or some filtered version of

the WFS.

o If all features are moved to root level.

 If a feature is referencing a feature in a child-parent relationship, probably need

to reference each other (with a “back pointer”), or decide on a case by case

basis.

o Advantages of nesting:

 Don’t have to rely on referencing.

 Don’t need schematron to validate.

 Quicker to parse.

o Ponti suggestions:

 Probably want to maintain as much hierarchy as we can allow.

 Where should we use referencing?

 Holes to projects

 Samples to holes

 Where should we keep hierarchy?

 Layers

 Insitu tests – some of them(?)

 Should probably engage broader group in this discussion. Meeting might include

Roger Chandler, Chris Power, Marc Hoit

 Burggraf suggests using the analog of a website to explain the concept

of feature and objects.

 ACTION: Turner set up meeting with Core SIG to suggest that an XML

technical group convene to discuss this further.

 Encode tabular data in the most compact way possible.

o ACTION: Burggraf will come up with recommendation.

o Will probably stick to something close to what we have.

o Can produce script for GML to KML to show how it works.

 Need to review Galdos contract and work with Burggraf to estimate hours needed for 1.2 and 2.0.

 Versioning:

o Starting with v2.0, implement versioning convention.

o Use 1.x series during development (1.1 and 1.2) even though it doesn’t conform to the

new convention.

o Consider renaming the 1.2 as 1.5 to imply the significant changes.

o Changes from 1.2 to 2.0 likely to be small.

DIGGS V2.0.a Documentation

 Page 268

E.19 Teleconference Meeting Notes 2010-04-22

Date: April 22, 2010

Time: 7:30 AM – 9:00 AM (PST)

Participants: Loren Turner

 David Burggraf

 Dan Ponti

Chris Bray

Not Available:

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Ponti and Burggraf have been corresponding this past week and resolving issues with the

schema.

 Burggraf currently working through the 20 example instance documents and identifying validation

errors.

o Order of elements.

o Depricated elements

 Ponti suggests needing to parse out work:

o Every element needs a definition

o Need annotations in the schema

 Defining geometry of hole – call it “linearExtent” or “centerline”?

o linearExtent is used for project geometries

o centerline is commonly used in geotech practice.

o Consensus to go with the term centerline

 We will use GML 3.3 for some of the geometry elements in the future.

o Linear referencing would reference GML 3.3.

o For now in v1.1:

 Move linear referencing to separate schema file.

 Use different prefix for it.

 Use the namespace prefix “G3.3” as a placeholder (different from kernel).

 Instance documents would reference both the GML 3.2 and G3.3 namespaces.

 This schema will become the profile for GML 3.3.

 Timeline for Burggraf:

o Schemas are mostly done today.

o Implement URN pattern restrictions in schemas and in examples.

o Change scripts.

o 1-3 days.

 ACTION: Turner to set up a new forum on DIGGS site for punchlist for v1.2 issues.

E.20 Teleconference Meeting Notes 2010-04-29

Date: April 29, 2010

DIGGS V2.0.a Documentation

 Page 269

Time: 7:30 AM – 9:00 AM (PST)

Participants: Loren Turner

 David Burggraf

Not Available: Dan Ponti

Chris Bray

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Update from Burggraf

o Emailed latest v1.1 schemas yesterday.

o Also sent all 20 examples converted and validated.

o Updated the Example 16 schema to extend DIGGS.

o Made all changes discussed in last couple of weeks.

 URNs

 Centerline

 GML 3.3 profile

 New position element

 ACTIONS: Burggraf to:

o Update DIGGS namespace in example instance docs to 1.1.

o Move declaration of gml 3.3 to top.

o Will post process and clean up multiple namespace declarations that Oxygen put

everywhere.

o Repackage the v1.1 and send out.

 ACTIONS:

o Ponti, Turner, Bray review the 0.98 zip package and give feedback to Burggraf.

E.21 Teleconference Meeting Notes 2010-05-13

Date: May 13, 2010

Time: 7:30 AM – 8:00 AM (PST)

Participants: Loren Turner

 David Burggraf

Chris Bray

Not Available: Dan Ponti

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Update from Burggraf

DIGGS V2.0.a Documentation

 Page 270

o Cleaning up final changes to examples from Turner’s comments.

o Should complete examples by Friday and send final package to group by Tuesday.

o Start developing URN RFC for IANA.

 Need to identify the group of people and contact info (3 to 5 people).

 Need naming authority.

 Bray to post v1.1 schemas on Tuesday.

 Turner to post announcement and v1.1 schemas, examples, codelists, and documentation on

diggsml website on Tuesday.

 Bray has presentation to AGS on v1.1 on May 25.

E.22 Teleconference Meeting Notes 2010-05-20

Date: May 20, 2010

Time: 7:30 AM – 8:00 AM (PST)

Participants: Loren Turner

 David Burggraf

Dan Ponti

Not Available: Chris Bray

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Approach to deal with codelists for v1.2.

o Identify elements that have codespace attributes.

o Check these elements to make sure they have a codelist created already.

o Make sure that the codelists are annotated properly.

o Identify elements that use enumerated lists. Should those be codelists instead?

o ACTION: Burggraf will create list as an excel file.

o ACTION: Turner set up meeting(s) with Core SIG members.

 Need to get Hoit to start looking at the piling schema.

 Should we try to standardize a format for tests? Have more continuity in form.

o For example, organize elements in groups:

 Metadata object

 Results object

o Burggraf will share examples from GeoSCIml.

 Proposed structural changes for DIGGS v1.2:

o ACTION: Burggraf will create example demonstrate how it looks using coverage model

encoding. Ponti suggests using the CPT example file (Example 02 - CPT Final.xml).

Ponti, Turner, Bray, and Burggraf discuss this further after looking at example to decide if

this should be presented to the Core SIG.

o ACTION: Create examples showing adding solid and composite area geometries to

project. Burggraf will create example.

o ACTION: Sample and Sampling Activity – separate the physical sample from the activity

that produces it. Ponti will work with Burggraf to create scripts to implement changes.

DIGGS V2.0.a Documentation

 Page 271

o ACTION: Layer systems. Ponti will work with Burggraf to create scripts to implement

changes

o Namespace issue – hold off on this for now.

o Divorce position information at locations from results of tests and observations. Ponti to

consider this further. Need to decide where position information goes. Discuss further

next week.

 Approach for dealing with structural issues:

o ACTION: Turner set up meeting(s) with Core SIG and software vendors for first week of

June.

o Decide on three issues:

 Solid and composite area geometries to project

 Sample and Sampling Activity

 Layer systems

o Present examples to demonstrate impacts of changes

o Goal of meeting is to make decision on whether to adopt change or not.

 ACTION: Turner go back through notes and emails from v1.1 development phase and compile

punchlist.

E.23 Teleconference Meeting Notes 2010-05-27

Date: May 27, 2010

Time: 7:30 AM – 10:30 AM (PST)

Participants: Loren Turner

 David Burggraf

Chris Bray

Dan Ponti

Not Available:

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Discussion on codelist work:

o For codelists, focus first on:

 Kernel

 Geotechnical

 Monitoring

o ACTION: Burggraf update codelist:

 URN codes to include authority.

o ACTION: Burggraf to revise spreadsheet to populate:

 Parent Element

 Documentation

 “Codes” worksheet

 Ponti presented work underway with schema changes.

o Features are at DIGGS root level.

DIGGS V2.0.a Documentation

 Page 272

o Features cross-reference each other. For example, projects point to locations, and

locations point back to projects.

o ACTION: Ponti will send out later today.

o ACITON: Burggraf will:

 Review the schema

 Check for GML compliance

 Generate 4 converted examples – use Example files 2, 3, 6, 11, 18

E.24 Teleconference Meeting Notes 2010-06-03

Date: June 3, 2010

Time: 7:30 AM – 10:00 AM (PST)

Participants: Loren Turner

 David Burggraf

Chris Bray

Dan Ponti

Not Available:

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Update from Burggraf – Finishing up work on codelist Excel spreadsheet and will send

to us in the next couple of days.

 Ponti briefed us on the changes made to the proposed v1.2a. He sent the schemas and

some documentation to the group this week.

 Ponti and Burggraf are working on the encoding for trenches.

E.25 Teleconference Meeting Notes 2010-06-10

Date: June 10, 2010

Time: 7:30 AM – 9:30 AM (PST)

DIGGS V2.0.a Documentation

 Page 273

Participants: Loren Turner

 David Burggraf

 Dan Ponti

 Scott Deaton

 Salvatore Caronna

 Roger Chandler

 Cliff Roblee

Agenda: DIGGS software vendors meeting

Notes:

The notes below were taken from an email sent by Ponti to the group on 6/10/10, and further

edited by Turner to include figures from presentation materials used during the meeting. Key

decisions on elements of the proposed DIGGS v1.2a were made following discussion during the

meeting. A summary of that discussion and decisions are documented throughout.

Following a discussion we had with software vendors a couple of months ago, we have

implemented some new structural changes in an test version of DIGGS v1.2 for evaluation

(v1.2a). While the recently released DIGGS v1.1 corrects GML and other schema complexity

issues that made the original version of DIGGS very difficult to work with, this 1.2a makes some

DIGGS V2.0.a Documentation

 Page 274

significant structural changes in schema organization that have relevance with respect to how the

schema is used in practice and mapped to. The intent of these changes were to:

 Allow from mapping to/from databases to be simpler and more direct and understandable

 Allow for easier transfer of partial information associated with a project or a location

 Allow for easier extension of the schema to include additional location types (places

where data are collected) and associated observations and tests.

Some of the groundwork for the above was laid in v1.1 with changes made to abstract data types.

The main purpose of the conference call is to get input from you as to whether the proposed

changes we're making appears to be helping to achieve the above objectives.

Quick Primer on GML Terminology, DIGGS Nomenclature, and Data

Organization

DIGGS is a GML application schema which means that all schema elements must derive from

abstract GML data constructs and follow GML's object-property rules, which governs how

schema elements and XML instance documents are constructed. GML describes the world in

terms of geographic entities called features, although not all features must contain geometry

properties. Features are simply complex data types that hold properties and geometries about the

entities they represent. In DIGGS v1.2, the GML features are real world entities (eg. holes,

samples, etc.) or processes - that "stand alone" and do not depend on other features for their

definition and context. GML objects are structurally the same as features - they are collections of

properties and geometries as well, but typically do not occur out of context with the features they

relate to. In DIGGS, objects are really just complex properties of features (a complex property is

one that contains a number of simple properties). For example a layer system defining soil

descriptions is a DIGGS feature, whereas the individual layers contained within a layer system

are objects. Properties are simple attributes of a feature. For example, a numeric result of a test is

a property of the test feature. Metadata objects are specially typed in GML to define objects that

provide ancillary information about features and objects. Generic GML applications can extract

metadata from GML instances or handle that information differently because of the special

typing. In DIGGS, things like Remarks and Associated Files are typed as metadata.

In DIGGS v1.1, we defined 9 classes of features (as shown in Figure 1 below), each of which

derives from its own common base type. In v1.2, the goal is to formalize this organization so

DIGGS V2.0.a Documentation

 Page 275

that all features fall within these classes and derive from their "class" base types. In v1.2a, most

current features have been so categorized, but there are some in the Piling, Environmental, and

Monitoring namespaces that still need to be assigned to a class, reclassified into objects, or

possibly deleted.

Figure 1 – There are 9 top-level feature classes in DIGGS v1.2a.

The nine feature classes are:

 Projects - business activities that collect, compile, and process information from

locations [Process]

 Locations - real world places and constructions from which observations are made,

samples are collected, or tests are run. [Entity]

 Sampling Activities - the process of sample creation or collection [Process]

 Samples - earth material, fluids, or gases collected or created for observation and testing

[Entity]

DIGGS V2.0.a Documentation

 Page 276

 Layer Systems - ordered interval observations or interpretations of earth materials,

properties or features at a location [Entity]

 Laboratory Tests - analyses performed on samples collected from locations, or created

via a sampling activity [Process]

 In-Situ Tests - analyses or observations at a location [Process]

 Sensors (I'd suggest a nomenclature change to Installations or Monitoring Installations) -

equipment or devices installed at locations that collect repeated measurements or

observations [Entity]

 Groups - collections of projects, locations, samples or groups of these, for the purpose of

providing meaningful context to observations and measurements.

All features in DIGGS carry a mandatory id (gml:id), required by GML and used for referencing

and linking with other features. All features also carry a mandatory identifier (gml:identifier),

required by DIGGS, which is a globally unique key for the feature, and uses a URN pattern.

Optional properties of all feature classes include status (needs clearer definition), description,

and associated file, role, and remarks metadata objects.

Discussion and Recommendation for Change to v1.2 Proposal

Concerns were raised about the requirement for a gml:identifier for all features. For some

software developers, this represents a significant change to the their backend software

structure with the need to generate and retain the gml:identifier in their data structures and

implemented in user interfaces. There were additional concerns about generating

gml:identifiers for features that typically aren’t identified (e.g. layers) versus those that

typical are identified (e.g. borehole, samples). It appears that the issue of use of globally

unique identifiers is also unresolved within the AGS standard.

As such, the consensus from the group was to make the gml:identifier an optional item. This

approach provides the most flexibility in applications and appears to meet all stakeholder

needs.. Users that don’t have a need to construct full data sets from various component data

sets from others can use DIGGS without identifiers. DIGGS files without identifiers will

have internal integrity and uniqueness within the context of that single file, however, cannot

be combined with other DIGGS files which may contain identical identifiers causing

conflicts.

Projects, Locations, Samples, Layer Systems, Sensors, and Groups are "named" features. In

addition to the properties above, they also carry a mandatory name property.

DIGGS V2.0.a Documentation

 Page 277

All objects (complex properties of features) must carry a mandatory id; optional properties of all

objects are description, status, and the remarks metadata objects. Some metadata objects are

named (eg. equipment and specifications), and carry a mandatory name property.

Metadata objects currently defined are:

 Document Information - information about the specific XML instance document

 Associated Files - references to non-XML documents or records outside of the XML

instance

 Business Associates - persons and institutions

 Equipment - well, you know, equipment :-)

 Specifications - test specifications or procedures

Organization of features in an XML instance.

DIGGS v1.0 and v1.1 represents the associations between features in a hybrid form - both in a

fixed hierarchical tree structure with some features that sit outside the tree and relate to features

in the tree by reference properties.

In DIGGS v1.2, all features are global, and associations between features are defined by specific

reference properties that carry both the id and the globally unique identifier of every object it

associates with. All features are organized in collections at the root level of the document

according to their classes. For example, consider a single project that has one borehole:

<DIGGS>

<projects>

<Project gml:id ="A"/>

<gml:identifier codespace =

DIGGS V2.0.a Documentation

 Page 278

usgs">urn:DIGGS:def:fi:USGS:usgs_A</gml:identifier>

<originalLocationRef xlink:href="#1"

identifierRef="urn:DIGGS:def:fi:USGS:usgs_1"/>

<Project gml:id = 'B'/>

</project>

<locations>

<Borehole gml:id = "1">

<gml:identifier codespace =

"usgs">urn:DIGGS:def:fi:USGS:usgs_1</gml:identifier>

<originalProjectRef xlink:href="#A"

identifierRef="urn:DIGGS:def:fi:USGS:usgs_A"/>

</Borehole>

<TrialPit .../>

</locations>

...

</DIGGS>

Note, in this example:

 The Project and the Borehole are at the same level in the DIGGS hierarchy.

 The Project “A” carries a reference to the Location/Borehole “1”.

 Location/Borehole “1” carries a reference to Project “A”.

Another way to look at this without the need to interpret the XML syntax is shown in Figure 2.

In this example Project “A” contains Borehole “1” where two samples were taken.

DIGGS V2.0.a Documentation

 Page 279

Figure 2 – Example implementation of feature associations.

This reason for organizing features in this manner is that this structure both maintains strict two-

way associations between features (i.e. parent-child associations are preserved where

appropriate), while allowing individual feature classes to be transmitted in XML instance

documents without having to also transmit information about the objects they are associated

with, except for their id's and identifiers. The reason that the referencing properties carry both the

id and identifier is that an xlink:href may not actually resolve to a real object in an XML file

somewhere (it could reside in a database instead), but the global identifier (the key) is still

maintained in the referencing feature, so that associations can link up later, in a database or

processing software. This allows flexibility in business practice and reduces redundancy and

requirements to update records in databases when there is no need to do so. When a hole is

drilled, the driller can transmit the hole information in one instance file, next the geologist can

independently transmit the layer descriptions with a reference to the hole, and finally, the

logging company can deliver the geophysical log with a hole reference - all in separate instance

documents but the information can be compiled together (and transmitted later together in a

single instance document as part of a final report) because they will all carry references to the

DIGGS V2.0.a Documentation

 Page 280

hole feature that they associate with. This can be done with or without a requirement to send

along project information.

Figure 3 shows an illustration of how the feature classes are associated in DIGGS.

Figure 3 – Proposed feature class associations in DIGGS v1.2a.

Discussion and Recommendation for Change to v1.2 Proposal

Concerns were raised regarding the “atomic” nature of the feature classes. On one hand, the

ability to transmit feature data independently had merit for specific use cases (e.g. blind

testing in environmental applications). On the other hand, the lack of a project reference in an

independently transmitted DIGGS feature would cause more significant issues when

compiling information from various DIGGS files.

A suggestion was made to include a mandatory reference in all features to the parent project.

DIGGS V2.0.a Documentation

 Page 281

Although this solves the problem described above, it creates the need for a project reference

in all of the features.

A second suggestion was made to make “Project” a higher level feature, thereby

implementing a hierarchy in the DIGGS structure. This would assure that Project data would

be present in all DIGGS instances due to the hierarchical structure.

The proposed v1.2a structure would be reorganized from that shown on the left, to that shown

on the right:

The AGS had adopted a single project hierarchical structure in its new format. In general, the

geotechnical software vendors use a structure more like this and is more common in practice.

Adopting the single-project hierarchical structure would likely be better received by the

DIGGS stakeholders.

By implementing this approach, however, the ability to reference multiple projects is lost.

This feature could be retained to some degree with an optional element within each feature to

point to other source projects. This would be an informational element and not a structural

DIGGS V2.0.a Documentation

 Page 282

one.

E.26 Teleconference Meeting Notes 2010-06-24

Date: June 24, 2010

Time: 7:30 AM – 10:00 AM (PST)

Participants: Loren Turner

 David Burggraf

Chris Bray

Dan Ponti

Not Available:

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Discussed the implications of making the change to the DIGGS structure where the major

features were moved under the Project feature in a hierarchy. As we discussed this further, it

became apparent that this particular change would have implications to XML data mapping

methods, and would limit backwards compatibility with subsequent DIGGS revisions if the

standard, at some point, is extended to accomodate more varied use cases.

 Two major requirements of the DIGGS structure (with respect to Projects) from the software

vendor’s meeting:

o Project information must be included in every DIGGS file.

o All features (samples, holes, etc.) must be "under" a single project in a DIGGS file.

 Given this, we propose to:

o Retain the structure originally presented at the meeting where all features are at the root

level.

o Make the Project feature mandatory in all DIGGS instances.

o Restrict Project feature so that only one Project in permitted in a DIGGS file.

o All features in the DIGGS file must fall "under" the single project (via href).

 Functionally, this achieves the same thing that the hierarchy does, and technically, it keeps the

overarching DIGGS structure consistent.

E.27 Teleconference Meeting Notes 2010-07-01

July 1, 2010

Time: 7:30 AM – 9:30 AM (PST)

Participants: Loren Turner

 Dan Ponti

 Scott Deaton

DIGGS V2.0.a Documentation

 Page 283

 Salvatore Caronna

 Roger Chandler

 Cliff Roblee

Agenda: 2
nd

 DIGGS software vendors meeting

Notes:

A summary of meeting agenda items discussed is as follows:

• Recap from last meeting on June 10, 2010:

– Gml:indentifier is optional.

– Project was moved to top hierarchy.

• Revised recommendation on Project hierarchy structure.

– Retain the structure originally presented at the meeting where all features are at

the root level.

– Make the Project feature mandatory in all DIGGS instances.

– Restrict Project feature so that only one Project in permitted in a DIGGS file.

– All features in the DIGGS file must fall "under" the single project (via href).

• Review remaining proposed v1.2 changes:

– Location Features

– Sampling and Sampling Activity

The notes below were taken from an email sent by Ponti to the group on 6/10/10, and further

edited by Turner to include figures from presentation materials used during the meeting. A

summary of that discussion and decisions are documented throughout.

Organization of features in an XML instance.

Discussion and Recommendation (updated 7/1/10)

Concerns were raised regarding the “atomic” nature of the feature classes. On one hand, the

ability to transmit feature data independently had merit for specific use cases (e.g. blind

testing in environmental applications). On the other hand, the lack of a project reference in an

independently transmitted DIGGS feature would cause more significant issues when

compiling information from various DIGGS files.

A suggestion was made to include a mandatory reference in all features to the parent project.

Although this solves the problem described above, it creates the need for a project reference

in all of the features.

A second suggestion was made to make “Project” a higher level feature, thereby

implementing a hierarchy in the DIGGS structure. This would assure that Project data would

DIGGS V2.0.a Documentation

 Page 284

be present in all DIGGS instances due to the hierarchical structure.

During the weekly DIGGS/Galdos status meeting following the 1
st
 software vendors meeting,

the team discussed at length the implications of making the change to the DIGGS structure

where the major features were moved under the Project feature in a hierarchy. It became

apparent to the team that this particular change would have implications to XML data

mapping methods, and would limit backwards compatibility with subsequent DIGGS

revisions if the standard, at some point, is extended to accomodate more varied use cases.

We recalled two major requirements of the DIGGS structure (with respect to Projects) from

the meeting:

 Project information must be included in every DIGGS file.

 All features (samples, holes, etc.) must be "under" a single project in a DIGGS file.

Given this, we propose to:

 Retain the structure originally presented at the meeting where all features are at the

root level.

 Make the Project feature mandatory in all DIGGS instances.

 Restrict Project feature so that only one Project in permitted in a DIGGS file.

 All features in the DIGGS file must fall "under" the single project (via href).

Functionally, this achieves the same end that the hierarchy does, and technically, it keeps the

overarching DIGGS structure consistent.

The AGS had adopted a single project hierarchical structure in its new format. In general, the

geotechnical software vendors use a structure more like this and is more common in practice.

Adopting the single-project structure with an implied hierarchy would likely be better

received by the DIGGS stakeholders.

DIGGS V2.0.a Documentation

 Page 285

Location Features

In v 1.1, the Hole feature was somewhat generic, it was set up to handle properties of a

geotechnical borehole, but could be other types that were of similar geometry but not really

boreholes (eg. a transect or trial pit). In 1.2a, there are now specific Location features that derive

from either AbstractPointLocation, AbstractLinearLocation, or AbstractPlanarLocation location

feature types, each of which have properties specific to that type of feature. This way, we can

model more types of features in a straightforward fashion in the future, such as embankments,

tunnels, roads, etc.

Diggs 1.2a now has defined in it the following location features:

 Borehole - very similar to Hole in v 1.1, but modified to handle 1.2 constructs. (Linear

Location)

 Trial Pit - a shallow excavation - legacy to handle current AGS trial pit constructs.

(Linear Location)

 Trench Wall - designed to supplant Trial Pit in the future. A wall of a trench or pit

represented by a vertical planar surface. (Planar Location); in 1.2a this is only partially

built

 Station - a point on the earth's surface (Point Location)

Discussion and Recommendation (7/1/10)

The group concurred that these four types are about the right breakdown for location feature

types. CPT would be considered a borehole.

Since all of the above location features could/would be utilized by the geotechnical,

environmental, and even piling disciplines, these concrete location feature types are placed in

Kernel (main Diggs namespace) in 1.2a.

Note, 1.2a has left over from 1.1 three concrete location features that are not yet classed as either

point, linear, or planar and need to be modified to bring these in line with the other locations.

They are:

 diggs_mon:MonitoringLocation

 diggs_pil:FoundationGroup

 diggs_pil:FoundationGroupInstance

Samples and Sampling Activities

Diggs 1.2a takes the v1.1 Sample feature and bifurcates the various properties into two features -

Sample and SamplingActivity. Sample only contains properties describing the physical aspects

of the sample and its chain of custody. The Sample feature contains a mandatory

DIGGS V2.0.a Documentation

 Page 286

samplingActivitiyRef property that identifies the activity that produced it, as well as references

to lab tests subsequently conducted on it. SamplingActivity features carry properties on the

location and position of the sample, the methods of sample creation, the sampling environment,

and equipment used.

The reasons for doing this are as follows:

 Creates logical separation between the process of creating a sample and the physical

sample itself.

 Completely isolates creation information from the Sample, ensuring that samples can be

transmitted with no information that might reveal its sources or source process.

 Creates a single referencing property from a sample to its creating process and henceforth

up the hierarchy - instead of the generic source property in 1.1 that could point to either

location or sample targets.

 Allows a sampling activity to be reported where an actual sample is not produced (no

associated Sample feature need exist).

 Multiple samples can be created from one activity without having to duplicate sampling

process information for each associated sample.

 Easier handling of subsamples and aggregates.

Samples can be created (the activity) at either locations (collected) or as a result of a business

activity (eg. a sample blank or an aggregate sample from several locations). In order that there be

no ambiguity in what a sampling activity references, an unidentified location feature has been

defined in Diggs 1.2 (has no geometry), that allows the sampling activity to reference a project

via a location (without a real location feature actually having to exist). This carries a bit of

overhead in the xml, but ensures unambiguous associations. A similar construct is also employed

that lets a test result associate to a position at a location via inferred or virtual sample and

sampling activity features.

Discussion and Recommendation (7/1/10)

The proposed structure of splitting a single sample feature into two, a sample and the activity

of sampling, was discussed. Observations and comments:

 Typical use case is to combine information on the sample with the information on the

collection of that sample. That is, the sample and the activity are typically considered

a single collection of information.

 If implemented as two separate features, most current software would need to

deconstruct sample data when mapping to DIGGS, then combine the data again when

importing DIGGS data. This is an extra mapping step that the software vendors

would need to accommodate. With some software, this mapping would need to be

identified by the user.

 In many cases the mapping would be one-to-one. That is, each sample would have a

corresponding sampling activity.

 The general approach of creating separate features was supported by the group,

although the implementation and acceptance by the user community was uncertain.

DIGGS V2.0.a Documentation

 Page 287

The group concurred on the following path forward at this time:

 Proceed with the proposal of separating samples and sampling activity as separate

features.

 Solicit feedback from Earthsoft and Dataforensics on the environmental use cases and

applicability of the proposal.

 Reassess the proposed structure following more testing after v1.2 deployment and use.

 Add references from samples to insitu test and lab test.

There was additional discussion about the idea of developing a database representation of

DIGGS. This would likely take the form of the Excel spreadsheet proposed as part of Task 3.

The spreadsheet/database wouldn’t represent all possible DIGGS data, but would provide a

simplified tool to demonstrate mapping to and from DIGGS for typical data. This would also

make assessing the implications of sample/sampling activity features more tangible.

However, a database/spreadsheet representation of a DIGGS instance shouldn’t be presented

to the community as a representative of the entire standard, or as a model for setting up a

database.

E.28 Teleconference Meeting Notes 2010-07-06

Date: July 6, 2010

Time: 7:30 AM – 9:30 AM (PST)

Participants: Loren Turner

 Dan Ponti

 Scott Deaton

 Salvatore Caronna

 Chris Bray

 Scott Weaver

Agenda: 3
rd

 DIGGS software vendors meeting

Notes:

A summary of the meeting is as follows:

• Recap of key actions/decisions from last two meetings (June 10 & July 1, 2010):

– gml:indentifier is optional.

– The Project feature will be mandatory in all DIGGS instances and will be

restricted so that only one Project is permitted in a DIGGS file. All features in the

DIGGS file must reference the single project.

DIGGS V2.0.a Documentation

 Page 288

– Implement the four types of location features as proposed – borehole, trial pit,

trench wall, and station.

– Implement Sampling and Sampling Activity as separate features as proposed

• Key actions/decisions from this meeting (July 6, 2010):

– Implement layer systems as proposed and use codelists to define constituents.

– Implement the GML coverage model for encoding CPT, geophysical, and similar

data types. Use the profile to restrict use to MultiPointCoverage element only.

The notes below were taken from an email sent by Ponti to the group on 6/10/10, and further

edited by Turner to include discussion notes from the meeting.

Layer Systems

Layer systems become more specific to make data mapping to DIGGS easier and to provide

more specificity in coding. The Layer system object now carries mandatory properties that

indicates which type of layer system it is, and that layer system's subtype. Layer system types

come from an enumerated list hard-coded into the schema; sub-types are code types that would

be defined in referenced code lists. The types of layer systems (enumerations) are:

 Color – describes the color of materials encountered

 Component – describe details of earth materials encountered

 Discontinuity – describes fractures and joints and their spacing

 Lithology – describe the earth materials encountered

 Orientation – describes the geometry of vectors or planar surfaces encountered at a

location, such as bedding, joints, cross-beds, etc.

 Other – describes a layer system of unknown type, using name-value pairs.

 Property – describes a layer system where the results are simple text or numeric values -

usually interpreted as a result of some lab or in-situ test (eg. porosity).

 Stratigraphy – describes ordered bodies of rock or soil, such as formations,

biostratigraphic units or aquifers.

The layer objects that are properties of layer systems are defined separately for each type of layer

system. For example, a layer system of type lithology has a layer of type LithologyLayerType,

which has properties unique to lithology layer systems.

Note - Discontinuity layer systems replace the discontinuity and fracture spacing properties of

the Hole feature in v 1.1.

Discussion and Recommendation (7/6/10)

The group concurred that the constituent types (e.g. density, consistency, moisture, plasticity,

etc. in the Lithology layer structure) should be based on codelists rather than enumerated lists,

since differences in practice in the community may require different types of constituents

with different meanings.

DIGGS V2.0.a Documentation

 Page 289

There was general consensus to support the proposed layer system construct.

Positions of Sampling Activities, Layers, Tests and Sensors at Locations

Diggs v 1.1 uses point properties of top and base to describe the positions of observations (eg.

sampling activities layers, tests, sensors) at locations. This position type is suitable only for holes

and hole type features where the positions are described along a vertical (or nearly so) linear

reference. This is constraining and does not allow for easy reuse of these observation features.

In 1.2a, all of these observations carry a position property type that contains a LocationPosition

object that is defined by the specific type of Location feature where the observation occurs. So,

position properties for a borehole feature are contained within a BoreholePosition position

object. A BoreholePosition object consists of a choice of two properties:

 measuredDepth (a gml:PointProperty in 1D)

 depthInterval (gml:CurveProperty in 1D).

A TrenchWallPosition object consists of a choice between a pointPosition (2D Point property),

linearElementPosition (2D Curve property), of a surfacePosition (2D surface property).

For example, a layer described in a hole would contain a BoreHolePosition object in its position

property - typically with a depthInterval property that defines the top and base of the layer. If the

layer were associated with a trench wall, its position property would contain a

TrenchWallPosition object to define its position on a trench wall in a 2D reference system; this

would most likely be a surface property (polygon) that defines the exposure of the layer in the

trench wall. The layer feature's other properties remain exactly the same; there is no need to

redefine a layer for different location features.

Coverage Model

The coverage model in a GML construct that has two main sections:

 <domainSet> – region which the values are assigned. (e.g. for CPT, this is the block of

depth data.) Can be one of two types:

o <RectifiedGridCoverage> – define top and bottom depths and the interval,

spacing is regular

o <MultiPointCoverage> – not regularly spaced depths

 <rangeSet> – contains the data values.

o <CurveInfo> - defines the columns in the data block

o <curveClass> - column headers from a codelist

o <tupleList> - data block; has attributes for value separators and line separators.

DIGGS V2.0.a Documentation

 Page 290

Discussion and Recommendation (7/6/10)

General consensus that the coverage model approach should be implemented. For the initial

implementation, use the profile to restrict use of MultiPointCoverage only, since most

software will encode using the MultiPointCoverage element. The RectifiedGridCoverage

element provides some file size savings, but makes encoding more complex for most cases.

Groups

In version 1.1, Groups are generic and can associate any kind of feature with generic reference

properties that do not have a target defined. In 1.2a, there is now an AbstractGroupType and then

several base group features developed from this, each of which can group only one type of

feature. The concrete groups are:

 ProjectGroup - a group of projects

 LocationGroup - a group of locations

 SampleGroup - a group of samples

 GroupGroup - a group of groups

This construct could be extended further for even more specific group types. For example, rather

than a FoundationGroup being a location feature, it probably should be group of

FoundationInstances, (extension of a GroupGroup) which in turn is a group of Piles (extension of

LocationGroup).

E.29 Teleconference Meeting Notes 2010-07-08

July 8, 2010

Time: 7:30 AM – 10:00 AM (PST)

Participants: Loren Turner

 David Burggraf

Chris Bray

Dan Ponti

Not Available:

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

Review actions from software vendor’s meetings over last few weeks:

 gml:identifier is optional.

DIGGS V2.0.a Documentation

 Page 291

o This is now done with v1.2.4a.

 The Project feature will be mandatory in all DIGGS instances and will be restricted so that only

one Project is permitted in a DIGGS file. All features in the DIGGS file must reference the single

project.

o This is now done with v1.2.4a.

o No action needed.

 Implement the four types of location features as proposed – borehole, trial pit, trench wall, and

station.

o This is now done with v1.2.4a.

o No action needed.

 Implement Sampling and Sampling Activity as separate features as proposed.

o This is now done with v1.2.4a.

o No action needed.

 Implement layer systems as proposed and use codelists to define constituents.

o This is now done with v1.2.4a.

o No action needed.

 Implement the GML coverage model for encoding CPT, geophysical, and similar data types. Use

the profile to restrict use to MultiPointCoverage element only.

o This is now done with v1.2.4a.

o Need to check the implementation of this.

 ACTION: Burggraf will run validation checks for GML compliance for these changes with v1.2.4a.

Specifically, check the implementation of the coverage model (i.e. nesting structure with

DataBlock, columns).

Revised structure for laboratory tests and insitu tests.

 General structure has:

o parameters

o results

 For example:
 <DensityTest gml:id="d123">
 <gml:description>Average soil density for all samples at the project site</gml:description>
 <projectRef xlink:href="#p1"/>
 <sampleRef xlink:href="#s321"/>
 <parameters>
 <diggs_geo:DensityTestParameters>
 <samplePreparation>cut 1 inch block from sample for test</samplePreparation>
 </diggs_geo:DensityTestParameters>
 </parameters>
 <results>
 <diggs_geo:DensityTestResults gml:id="dm123">
 <diggs_geo:bulkDensity uom="g/cm3">2.07</diggs_geo:bulkDensity>
 <diggs_geo:isNatural>true</diggs_geo:isNatural>
 </diggs_geo:DensityTestResults>
 </results>

 </DensityTest>

 All the tests need to be converted into this new structure.

o Domain experts will eventually need to be involved and review this. This cannot be

completely automated.

o Convert all existing test elements to <results> elements.

o ACTION: Ponti will provide instructions to Burggraf on doing the initial conversion.

Description of task on codelists:

 Review the “CodeTypes” worksheet.

o Check that all the elements are still needed.

o Use the schema documentation to see that it’s still used.

DIGGS V2.0.a Documentation

 Page 292

 For each element in the “CodeTypes” worksheet, check that the corresponding list is present in

the “Codes” worksheet.

o Are all possible codes present?

o Check against earlier data dictionaries.

o Build the codelist if it doesn’t exist.

o Authority should reflect the standard being referenced. Use “DIGGS” if no other

authority can be referenced.

 See example spreadsheet (below)

 Codes shouldn’t use spaces or special characters. Use upper camel case. (e.g. StaticCone)

 ACTION: Burggraf will regenerate spreadsheet with v1.2.4a.

DIGGS V2.0.a Documentation

 Page 293

DIGGS V2.0.a Documentation

 Page 294

DIGGS V2.0.a Documentation

 Page 295

E.30 Teleconference Meeting Notes 2010-07-29

Date: July 29, 2010

Time: 7:30 AM – 10:00 AM (PST)

Participants: Loren Turner

Chris Bray

Dan Ponti

Not Available: David Burggraf

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Revisions from software vendor’s meeting.

o The changes have been implemented in 1.2.4b.

 Implementation of revised test data structure.

o Skipped the piling schema.

o Test procedure vs. test result. Consider a structure where soil/rock index

properties can be transmitted with or without reference to the test procedure that

produced it.

o ACTION: Turner to set up meeting with Turner, Ponti, Roblee, and Ponti in

Sacramento to discuss testing parameters and procedures.

 New codelist worksheet.

o Ask Burggraf to regenerate this based on the latest changes.

o ACTION: Burggraf to send revised spreadsheet based upon 1.2.4c.

 3D compound CRS issue.

o EPSG doesn’t have many combined horizontal and vertical datums for US.

o For UK practice, generally there is one.

o Need to combine horizontal and vertical and create CRS.

o DIGGS can define a common set of CRS used in US and UK practice and host

these on the DIGGS site? Creates a maintenance issue.

o Or, develop a construct within the DIGGS file that combines two SRS? Need to

ask Burggraf about this. Maybe create a SRS feature that declares both. Then

everything else references the gml:id for that feature.

o ACTION: Burggraf assess options on this.

DIGGS V2.0.a Documentation

 Page 296

E.31 Teleconference Meeting Notes 2010-08-05

Date: August 5, 2010

Time: 7:30 AM – 10:00 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Not Available: Chris Bray

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Implementation of revised test data structure.

o Test procedure vs. test result. Consider a structure where soil/rock index

properties can be transmitted with or without reference to the test procedure that

produced it.

o ACTION: Turner to set up meeting with Turner, Ponti, Roblee, and Ponti in

Sacramento to discuss testing parameters and procedures.

o Consider using the gml Observation structure:

Option 1 -- Observations and procedures are separate objects.

Observation1

 Shear strength (ref: procedure1)

Observation2

 Shear strength (ref: procedure2)

Observation3

 Shear modulus (ref: procedure1)

Procedure1

 Pressuremeter

Procedure2

 Triaxial

Option 2 -- Observations and procedures are inline.

Observation1

 Shear strength

 Shear modulus

Procedure1

 Pressuremeter

DIGGS V2.0.a Documentation

 Page 297

Observation2

 Shear strength

Procedure1

 Unknown

Current structure.

Pressuremeter Test

 Results

 Shear strength

 Shear modulus

Parameters

 Pressuremeter test parameters

Reference to sample (mandatory)

Generic Shear Strength Observation

 Results

 Shear strength

Parameters

Unknown

Proposed structure.

Test Observation 1

 Results

 Shear strength

 Shear modulus

Parameters

 Pressuremeter test parameters

Position (relative to location object) (optional)

Reference to sample (optional)

Test Observation 2

 Results

 Shear strength

Parameters

Unknown

Position (relative to location object) (optional)

Reference to sample (optional)

Test Observation 3

 Results

 Blow Count

 Relative Density

 Shear Strength

DIGGS V2.0.a Documentation

 Page 298

 Porosity

Parameters

unknown

Position (relative to location object) (optional)

Reference to sample (optional)

 New codelist worksheet.

o ACTION: Burggraf to send revised spreadsheet based upon 1.2.4c. Will do by

early next week.

 3D compound CRS issue.

o EPSG doesn’t have many combined horizontal and vertical datums for US.

o For UK practice, generally there is one.

o Need to combine horizontal and vertical and create CRS.

o DIGGS can define a common set of CRS used in US and UK practice and host

these on the DIGGS site? Creates a maintenance issue.

o Or, develop a construct within the DIGGS file that combines two SRS? Need to

ask Burggraf about this. Maybe create a SRS feature that declares both. Then

everything else references the gml:id for that feature.

o ACTION: Burggraf assess options on this.

 Create GML compound CRS

 Need SR IDs for all the various combinations

 Use WKT (Well known text) and build library

E.32 Teleconference Meeting Notes 2010-08-11

Date: August 11, 2010

Time: 7:30 AM – 9:00 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Not Available: Chris Bray

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 ACTION: Create GML compound CRS.

o Need SR IDs for all the various combinations.

o Use WKT (Well known text) and build library.

DIGGS V2.0.a Documentation

 Page 299

o Ponti will identify combinations for US.

 Determine all horizontal coordinate systems in the US

 Combine with the three vertical datums: NAVD88, NGVDC29, MSL

o Burggraf will generate compound CRS files.

 ACTION: Burggraf to:

o Test the 1.2.4d schema for object-property rule.

o Update the testinstance DIGGS file to 1.2.4d

o Coordinate with Ponti if 1.2.4d needs to be fixed.

E.33 Teleconference Meeting Notes 2010-08-18

Date: August 18, 2010

Time: 7:30 AM – 10:00 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Not Available: Chris Bray

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Discussed ideas about revising the Lab test structure.

o Ponti, Turner, Roblee, and Hannenian (Caltrans Geotech) met yesterday to

review State DOT lab testing procedures. The group identified a test data

construct that appears to address the various DIGGS use cases and common

practices.

o Adopt data construct similar to OGC’s “Observations and Measurement”

standard.

o The structure of the test data would look something like this:

Test (Observation)

 Date

 Time

 ….(other metadata)

Reference to the Property/Result

Reference to sample (optional)

Procedure/Parameters

 Triaxial test parameters

 Specification

 Load rate

 Pressure

 ….(other metadata)

DIGGS V2.0.a Documentation

 Page 300

Property (Result)

 Shear strength

 Shear modulus

 ….(other metadata)

 Position

 Reference to location feature

 Reference to the Test

Borehole

 Reference to the Property/Result

o There would be three main test objects – Test, Procedure, and Property,

 Test – this is the observation that contains the info about the execution

of a procedure. For example, the date, time, and person that did the

test.

 Procedure – this has the info about the actual test itself, such as test

type, specification, and any interim test results used to arrive at the final

result, or property.

 Property – This is the value resulting from the test that is a property of

the material. This can be a measurement (3500 tsf), classification

(Sandy Clay), a Boolean (is organic), etc.

o The structure would allow the DIGGS creator to transmit a property without

reference to a test, common with legacy data on boring logs. (For example,

shear strength of a soil at a depth with no indication of how that value was

determined.)

o Multiple tests can produce the same properties.

o Multiple properties can be generated from one test.

o Schematron could be used to insure that valid properties are associated with the

tests.

o For CPT data, the construct would have the coverage model within the property.

Test (Observation)

 Date

 Time

Reference to the Property/Result

Reference to sample (optional)

Procedure/Parameters

 CPT test parameters

Property (Result)

 Coverage model data

 Domain

Range

Tip

 Sleeve

….(other metadata)

 Reference to location feature

 Reference to the Test/Observation

Borehole

 Reference to the Property/Result

DIGGS V2.0.a Documentation

 Page 301

 Completed creation of GML compound CRS.

o Used WKT (Well known text) and built the library.

o Ponti developed combinations for US.

 Determined all horizontal coordinate systems in the US

 Combined with the three vertical datums: NAVD88, NGVDC29, MSL

o Burggraf generated compound CRS dictionary. (Emailed to group this week.)

 3 files:

 North America

 UK

 World

 2 versions of each of the three files – XML and TXT (WKT).

 Need to publish these on the DIGGS website in a new “dictionaries”

directory.

 ACTION: Bray to post the XML and TXT (WKT) files at

http://schemas.diggsml.com/ in a new directory to be created called

“dictionaries”. (Rename the XML and TXT files to include “CRS” in the

filename.) For example:

http://schemas.diggsml.com/dictionaries/DIGGS_CRS_GML_NA.xml

http://schemas.diggsml.com/schemas/
http://schemas.diggsml.com/dictionaries/DIGGS_CRS_GML_NA.xml

DIGGS V2.0.a Documentation

 Page 302

 Created new EPSG type codes that combine the EPSG codes from the

horizontal and vertical. For example: “<EPSG code>_<EPSG code>”

 URN in DIGGS files will point to the DIGGS namespace.

o How to use these?

 KML prototype application will demonstrate how these are used by

applications.

 Disscussed the use of WITSML units schemas in DIGGS.

o Since DIGGS no longer uses the WITSML construct for geophysical or CPT data

(replaced by the GML coverage model), WITSML is now only used for the units

schemas. So, there’s no longer a need to reference the full WITSML schemas.

o Discussed the idea of taking the units schemas from WITSML and integrating

them into DIGGS. This would require many changes throughout DIGGS, but

could probably be done via scripts.

o Also, considered repackaging the relevant WITSML schemas under a “wrapper”

to include with DIGGS.

o ACTION: Burggraf to:

 Identify the units schemas from WITSML used by DIGGS.

 Consider how these schemas are imported currently.

 Look into schema “wrapper” or other approach to make use of units

schemas more efficient.

 Provide recommendation on how to proceed.

 Include the changes in 1.2.4f.

 Status of 1.2.4e

o Tested the 1.2.4d schema for object-property rule. Everything looked fine.

 Naming convention warning came up.

o Update the testinstance DIGGS file to 1.2.4f

o ACTION: Burggraf will fix and send out 1.2.4f.

E.34 Teleconference Meeting Notes 2010-08-26

Date: August 26, 2010

Time: 7:30 AM – 10:00 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Chris Bray

Not Available:

Agenda: DIGGS-Galdos weekly status meeting.

DIGGS V2.0.a Documentation

 Page 303

Notes:

 CRS Dictionaries

o Bray posted files on the DIGGS website.

o Combine the 3 dictionaries into a single dictionary. One XML file and one WKT

file.

o Should we version the CRS files or the dictionary?

 Carry the version in the URL

(http://schemas.diggsml.com/dictionaries/0.1/)

 Add an attribute to the XML files to carry the version. May add this to the

WKT files as well.

 Begin with version “0.1”

 Every CRS carries a version identifier. For example:

urn:diggs:def:crs:DIGGS:0.1:27700_5701

 Example in a DIGGS instance:

<g3.3:offsetVector

srsName="urn:diggs:def:crs:DIGGS:0.1:27700_5701">0 0 -

10</g3.3:offsetVector>

 CRS URN references in DIGGS instances will carry the CRS version as

a parameter.

 ACTION: Burggraf to modify files (add version attributes, change

“DIGGSINC” to “DIGGS”). Bray to create directory on website and

upload new files.

 Schema wrapper for WITSML units.

o Didn’t need to use a wrapper.

o Import just “typ_dataTypes” schema

o Eliminate 161 schema files from the WITSML directory.

o typ_dataTypes includes 5 schemas that reference units:

 typ_baseType

 typ_catalog

 typ_dataTypes

 typ_measureType

 typ_quantityClass

 Updated test instance for 1.2.4f

 Polygons for trenchwalls – didn’t display in Snowflake GML Viewer software.

o Add a reference edge

o Use a simple polygon.

o ACTION: Burggraf to make changes, create revised test instance, test in

Snowflake.

 Need to demonstrate use of DIGGS files in an off the shelf application:

o Works partially in Snowflake.

o Does not work in Gaia.

o ACTION: Ponti to try using the testinstance using Geotools.

o ACTION: Turner to work with Caronna to test in Bentley software.

http://schemas.diggsml.com/dictionaries/0.1/

DIGGS V2.0.a Documentation

 Page 304

 O&M schema evaluation – need to consider this approach further. Continue this

discussion next week.

Test (Observation)

 Date

 Time

 ….(other metadata)

Reference to the Property/Result

Reference to sample (optional)

Procedure/Parameters

 Triaxial test parameters

 Specification

 Load rate

 Pressure

 ….(other metadata)

Property (Result)

 Shear strength

 Shear modulus

 ….(other metadata)

 Reference to location feature

 Reference to the Test (optional)

Borehole

 Reference to the Property/Result

 Burggraf out until Sept 14. Next meeting on Sept 16.

E.35 Teleconference Meeting Notes 2010-09-16

Date: September 16, 2010

Time: 7:30 AM – 10:00 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Not Available: Chris Bray

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Recap tests from prior weeks on viewing DIGGS test instance file in Snowflake’s GML

Viewer free software. Observations:

o Appears to recognize and display 3D SRS coordinates.

DIGGS V2.0.a Documentation

 Page 305

o However, file needs to include the optional attribute for SRS dimension in order

for Snowflake to recognize 3D coordinates.

o Viewer supports GML 3.2 constructs.

 Observations on viewing DIGGS test instance file in Gaia:

o Does not recognize 3D SRS attribute tag.

o Parses coordinates as 2D.

 Tim Spink emailed last week expressing interest in reviewing encoding of trial pits, trench

walls, and similar location features.

o ACTION: Turner to set up meeting with Spink, Ponti, Bray on 9/30 to brief Spink

on DIGGS handling of these location features.

 No work has been done on codelist since last meeting.

o ACTION: Turner to begin this work.

 Lab test data structure

o ACTION: Dan and Loren will have meeting to continue discussion.

 Next team status meeting on 9/30.

 Punchlist for DIGGS v1.2 at this point:

o Need to identify changes (if any) to lab test data structure and implement.

o Need to finalize codelists and implement.

E.36 Teleconference Meeting Notes 2010-09-30

Date: September 30, 2010

Time: 7:30 AM – 10:00 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Not Available: Chris Bray

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Discussed the approach for handling codelists in DIGGS. Identified issues with the past

approach and identified a revised approach for implementation in DIGGS v1.2.

 The past approach attempted to maintain a comprehensive DIGGS codelist, containing a

compilation of commonly used standards by DIGGS stakeholders. This included various

categories of codes, such as:

Type A: Codes to describe in more detail a specific data element, where the data

element cannot be controlled or validated by the schema alone (e.g. table

data and CPT parameter names).

DIGGS V2.0.a Documentation

 Page 306

Type B: Codes created, maintained, and published by recognized standards

organizations, used in practice, and commonly referenced with or without

software (e.g. USCS Group Symbols for soil classification, Munsell color

codes, EPSG spatial reference codes).

Type C: Codes created by an organization, government agency, trade group, or

company to standardize nomenclature and terms across a specific user base

(e.g. Roles, titles, equipment names, test names).

 The proposed design approach for DIGGS with regards to managing the three types of

codes:

o If the code is absolutely necessary for DIGGS to function and be unambiguous

for source and target data interchange, then these codes should be implemented

into enumerated lists. Enumerated lists are part of the schema and are validated

by schema alone. All of the “Type A” codes fall in this category.

o For codes that are commonly referenced, nomenclature and abbreviations well

documented, and maintained by a standards body, these should be implemented

in DIGGS using codetype and codespace attributes. “Type B” codes fall in this

category. DIGGS might require that some codetype and codespace attributes be

mandatory. Although the codespace would reference the standards organization

(e.g. USCS, AASHTO), the full list of codes (e.g. SP, SW) would not be in the

codelist, since the standards organization maintains this list, and it would be left

to the users to comply with the standards published by that standards

organization.

o Codes that are used in localized practice, as described by the “Type C” codes,

should be made available for integration into DIGGS as needed. Codespace and

codetype attributes would be optional. This would be applicable, for example, for

codes such as “roles” where the value itself likely carries meaning without other

external references. However, specific user groups may want to standardize the

possible values being used. Three possibilities:

 DIGGS file authors could simply use codes (uncontrolled) without any

reference to a codetype or codespace. However, the recipient of the

DIGGS file would not know what standards are being referenced.

 The DIGGS author could populate the codetype and codespace

attributes. Since these are optional and the format uncontrolled, the

recipient may still be unable to resolve the references in a systematic

manner.

 The DIGGS author could reference a published codespace that can be

validated with schematron.

 Codespace validation in schematron.

o This should evaluate codespace compliance in a generic way.

DIGGS V2.0.a Documentation

 Page 307

E.37 Teleconference Meeting Notes 2010-10-07

Date: October 7, 2010

Time: 7:30 AM – 9:30 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Chris Bray

Not Available:

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 Continued discussion on the approach for handling codelists in DIGGS. General

consensus reached on proposed approach from prior meeting. Three generalized types

of codes and proposal for handling in DIGGS are summarized:

Type Description Proposed DIGGS Implementation

A Codes to describe in more detail

a specific data element, where

the data element cannot be

controlled or validated by the

schema alone (e.g. table data

and CPT parameter names).

If the code is absolutely necessary for DIGGS to function and be

unambiguous for source and target data interchange, then these codes

should be implemented into enumerated lists. Enumerated lists are part

of the schema and are validated by schema alone.

B Codes created, maintained, and

published by recognized

standards organizations, used in

practice, and commonly

referenced with or without

software (e.g. USCS Group

Symbols for soil classification,

Munsell color codes, EPSG

spatial reference codes).

For codes that are commonly referenced, nomenclature and

abbreviations well documented, and maintained by a standards body,

these should be implemented in DIGGS using codetype and codespace

attributes. DIGGS might require that some codetype and codespace

attributes be mandatory. Although the codespace would reference the

standards organization (e.g. USCS, AASHTO), the full list of codes (e.g.

SP, SW) would not be in the codelist, since the standards organization

maintains this list, and it would be left to the users to comply with the

standards published by that standards organization.

C Codes created by an

organization, government

agency, trade group, or

company to standardize

nomenclature and terms across

a specific user base (e.g. roles,

titles, equipment names, test

names).

Codes that are used in localized practice should be made available for

integration into DIGGS as needed. Codespace and codetype attributes

would be optional. This would be applicable, for example, for codes

such as “roles” where the value itself likely carries meaning without other

external references. However, specific user groups may want to

standardize the possible values being used. Three possibilities:

 DIGGS file authors could simply use codes (uncontrolled) without

any reference to a codetype or codespace. However, the recipient

of the DIGGS file would not know what standards are being

referenced.

 The DIGGS author could populate the codetype and codespace

attributes. Since these are optional and the format uncontrolled, the

recipient may still be unable to resolve the references in a

systematic manner.

DIGGS V2.0.a Documentation

 Page 308

 The DIGGS author could reference a published codespace that can

be validated with schematron.

 Implementation of codelists in DIGGS using codetype elements:

o Codetype element – has one attribute, codespace

o Codespace – points to the authority or dictionary. This can be a text string, URN

referencing a specific codelist, or URL to a website where the published standard

can be found. For example:

<soilClassification codeSpace="Caltrans Logging Practice">SAND</ soilClassification >

<soilClassification codeSpace="urn:diggs:def:soilclass:Caltrans ">SAND</ soilClassification >

<soilClassification codeSpace="http://dot.ca.gov/logging_standards.pdf">SAND</

soilClassification >

o Codetype with authority requires the codespace attribute populated.

 For codetype elements, it is not possible to validate the codespace attribute with XML

schema validation tools alone. However, validation is possible through the use of

schematron, a schema validation language that some software could use to further

validate XML against specific business rules. This is typically an extra step in the

validation process. For the codetype elements, the schematron could be set up to

validate all codetype elements in a uniform and generic manner. For example, whenever

a codetype element is encountered, the schematron would:

o Evaluate if the URN points to a specific codelist. If so, it checks the element

value against the codelist.

o Evaluated if the URN points to a valid URL.

o If the URN or URL is not valide, the schematron would report a validation error to

the user.

 Users can choose whether or not to validated DIGGS files with schematron. For those

that require strict validation with business rules, the schematron validation step may be

worthwhile. However, for cases where strict adherence to business rules are not

necessary (e.g. source and target software use well-defined and mutually compatible

codes), schematron may not provide additional benefit.

 Development and maintenance of “Type C” codelists.

o The DIGGS organization will not publish official codelists as part of a standard

release.

o Codelists will be developed and maintained by user groups.

 The DIGGS organization will provide an online community forum that facilitates the

formation of practice groups.

o These groups could be regional-based, practice-based, or organized based on

specific needs of a particular stakeholder group.

DIGGS V2.0.a Documentation

 Page 309

o The forum will allow posting of codelists under stakeholder groups.

o Stakeholder groups can establish review committees to approve changes to

codelists, if desired.

o Forum will have upload tools to make it easy to create codelists and upload them

for community usage. (e.g. Excel-based, or web-form driven)

E.38 Teleconference Meeting Notes 2010-11-03

Date: November 3, 2010

Time: 7:30 AM – 10:15 AM (PST)

Participants: Loren Turner

Dan Ponti

Chris Bray

Roger Chandler

Not Available:

Agenda: Meeting to discuss schema change proposals.

Notes:

 Agenda:

o Proposal to combine monitoring into the kernel

o Consider combining environmental with monitoring.

 Issues with capturing data from wells:

o Multiple wells in a single hole.

o Backfill, however, is in one hole.

o Wells are not locations.

o AGS made distinction on process of how the water level was made (piezometer

vs. tape) and stored in two different ways. However, resulting measurement was

the same.

o In AGS, monitoring is a location type and can be a child of a borehole.

 Actions:

o Need to fix monitoring in DIGGS.

o Ponti come up with strawman construct. Review with Chandler and Bray.

o Followup meeting in a couple weeks.

o Include the monitoring feature in the kernel.

o Split monitoring into:

 Wells

 Sensors

DIGGS V2.0.a Documentation

 Page 310

E.39 Teleconference Meeting Notes 2010-12-15

Date: December 15, 2010

Time: 7:30 AM – 10:00 AM (PST)

Participants: Loren Turner

Dan Ponti

Tim Spink

Not Available:

Agenda: Discussion on the proposed approach for encoding trenchwalls and trial pits in

DIGGS v1.2

Background:

Provided by D. Ponti in a 12/14/10 email. (Additional figures inserted by L. Turner):

To start, it might be best to back up a bit and cover some of the changes and structure in DIGGS

v. 1.2 as this may help you better understand the origin of the trench wall treatment.

First off, The earlier hierarchical structure is flattened in v.1.2, insofar as the major feature classes

in DIGGS are all carried at the top level of the instance document. This is done so that partial

transmissions of information can be sent atomically, without having to send redundant data. It

also allows for more flexibility in associating features with one another, which was getting us into

trouble in v. 1. The current main feature classes in DIGGS are:

1) Projects (the business activity that produces or contains other DIGGS features)

2) Locations (features where samples are collected or observations made)

3) Sampling Activities (eg. the process of taking a sample - includes sample position

information)

4) Samples (the physical sample itself)

5) Layer Systems (eg. geologic layers, etc)

6) In-situ tests

7) Laboratory tests

8) Groups

And some metadata feature classes:

1) Business Associates

2) Associated Files

3) Contracts

4) Equipment

5) Specifications

DIGGS V2.0.a Documentation

 Page 311

Location features are the heart of DIGGS. They are places where samples are taken, tests are

run, and/or observations are made. I mentioned in our last phone call that I was becoming

uncomfortable with the use of the term Location for these things, as the term location is more

commonly thought of as only a position (e.g. coordinate, etc.), as opposed to a real-world feature

that can be complex and contain many properties. I suggested the use of the term Site when we

last talked, which you didn't like because of other connotations there. Nonetheless, while I can

live with Location, I'd like to suggest we think of a different term. OGC's O&M evolving standard

refers to things like boreholes as "sampling features" which is a good description, but since we

don't directly inherit from their feature types, we probably shouldn't use the same term.

One other thing - in the following, I'll be using the term observation. In this context, I'm describing

any feature or process that provides information about an earth property "observed" at a location

feature. So sampling activities, samples, layers, and tests are all "observations" at a location

feature in the context of our discussion here.

Anyway, in version 1 most of the effort went into the "Hole" feature, although we also had a few

others (eg. Station, FoundationGroup), and hole largely paralleled its usage in AGS where it is

used as a catch-all for a geotechnical borehole, trial pit, etc.). In v. 1.1 and 1.2, we've created a

structure where a basic location is abstracted and then very specific "concrete" location features

are built from the abstract types. BTW, to be clear, an abstract element in XML is one that exists

in schema but isn't used in an instance document directly. Instead, concrete elements (that are

used in an XML document) are defined in the schema that substitute for the abstract types and

contain properties (other elements or tags) from the abstract element. In DIGGS 1.2,

AbstractLocation derives from the basic GML feature type (required for a GML application

schema) and adds to it properties that reference other features that the location may be

associated with (such as its project, layers, etc.) Using AbstractLocation as a base type, there are

3 abstract location elements defined that can substitute for abstract location and add geometric

elements that define the geometries of the Location feature. AbstractLinearLocation serves as a

base type for Location features whose geometries are modeled as a line or curve (linestring) -

such as a borehole. AbstractPointLocation serves as a base type for location features whose

geometries are modeled as a point in space (eg. a sampling station), and AbstractPlanarLocation

is used as a base type for Location features whose geometries can be modeled as planes

(although this isn't strictly true, as I'll explain below).

All location features have one or more properties that define the geometry of the feature. All

features have a mandatory property called a referencePoint, which is of type

gml:PointPropertyType and defines a point in (typically) a defined coordinate reference system

(eg. a combined CRS with British Grid and a vertical datum). For point location types, this is the

only geometry property. Linear location features adds one other mandatory geometry property -

centerLine, of type gml:CurvePropertyType, which defines the centerline of the linear feature (eg.

a borehole or roadway centerline). Like the referencePoint, the centerLine's coordinates are

typically in some defined geographic or projected CRS. Planar location features have a

referencePoint and a similarly structured (eg. it's a curve) property to centerLine, but instead is

called a referenceEdge. I'll get more into its use in a bit. In addition, planar location features have

two optional geometry properties that define the physical boundaries of the feature - these are of

type gml:SurfacePropertyType (eg. polygons). The first, featureExtent, defines the feature's

boundary in a concrete geographic or projected CRS and is used to display the feature in typical

simple mapping software that supports GML 3.2 and below. After our conversation last time when

you questioned why the perimeter of a trench is coded in a 3D CRS whereas other positions are

relative, the answer is so that trench locations (or their outlines) can be displayed in existing

DIGGS V2.0.a Documentation

 Page 312

software. After discussing this with Galdos, we added a second optional element called a

relativeFeatureBoundary, which is functionally the same as featureExtent, but is defined in the

linear reference system of the trench (more on this is in a bit). Future GML 3.3 savvy software

(such as the KML viewer that Galdos is now building for us) will be able to understand and

display a relativeFeatureBoundary. Instance authors can populate either, both, or none of these

properties, as the feature boundary isn't an essential property of a planar location feature

(although a good one to include).

In addition, linear and planar location features carry a mandatory complex property called

linearReferencing, that defines the relative spatial reference system that observations use to

identify their positions on the location feature. This referencing system is part of GML 3.3, which

isn't released yet, but provides a simpler way of referring to positions than was required in the

past (where engineering systems needed to be defined and where existing software didn't know

how to handle this stuff). So, going in this direction looks to the future, results in simpler encoding,

and, while no existing software supports GML 3.3, the idea is that this is a more standard way to

handle relative positional referencing, so that this will be supported down the road. In the

meantime, Galdos is writing for us a translation package that will support GML 3.3 and allow

DIGGS files to be viewed in GoogleEarth.

From these abstract location types, DIGGS 1.2 has several "concrete" location features defined -

these are the ones that can show up in an XML instance document. Borehole and TrialPit

features derive from AbstractLinearLocation; TrenchWall derives from AbstractPlanarLocation,

and Station derives from AbstractPointLocation. Now that we have the basic structure defined, it's

a relatively simple process to add more location features to DIGGS (eg. piles, embankments,

etc.). Note, a trial pit in DIGGS 1.2 functions identically to a trial pit in AGS, in that it is modeled

as a linear feature, only it is explicitly called a trial pit in DIGGS, as opposed to using the hole

group in AGS. Trial pits in DIGGS, therefore, are meant to serve as a legacy feature for older

AGS structured data. In the future, the idea would be to use the TrenchWall feature instead of a

TrialPit.

Ok, so now that we have defined the basic structure of our location features we need to be able

to refer to the "positions" of observations from those location features. We don't need to do this

for point locations, as these are essentially 0-dimension features - all observations at such

locations are defined at the point of the location feature. But for other location features,

observations can be made at a number of positions on the feature. In DIGGS 1 and 1.1, that

positional information (eg. top and base) was hard coded into the properties of our observations,

which "locked" in an observation so that it was only relevant to a location feature. So, we have a

sample defined for a borehole, but what about a trench wall? With the old structure, you'd have to

define another sample feature for trenches. And this extends to all other relevant observations

that could be made at different location features as well, and will eventually lead to extreme

schema bloat. If you think about it, the actual properties of a sample or a geologic layer are

independent of the feature from which it is being described. The only aspect of a sample collected

from a trench wall, for example, that is different from one collected in a borehole is how the

positional information is encoded (sampling process may be different, too, but structurally, this

information is recorded in the same way). But if we can generalize the position property for

observations, we can then define one observation type, say sample or layer, and then reuse this

type regardless of what location feature the sample or layer comes from. This makes extension

much simpler and cleaner.

DIGGS V2.0.a Documentation

 Page 313

How this works in practice is that for every concrete location feature, we define a position object

that contains properties that defines the relative positions that are possible for observations within

a given location feature. This position object is then substituted into the position property for an

observation. So for the position of a sampling activity in a borehole, the XML looks something like

this:

 <SamplingActivity gml:id="xyz">

 <projectRef xlink:href="#p1"/>

 <associatedLocationRef xlink:href="#h123"/> <!-- refers to a borehole feature -->

 <activityPosition>

 <BoreholePosition gml:id="bpp1">

 <depthInterval>

 <gml:LineString gml:id="pl1">

 <gml:posList srsName="#sr123" srsDimension="1">5 7</gml:posList>

 </gml:LineString>

 </depthInterval>

 </BoreholePosition>

 </activityPosition>

</Sampling Activity>

whereas a sampling activity in a trench would look like this (for a channel sample):

 <SamplingActivity gml:id="xyz">

 <projectRef xlink:href="#p1"/>

 <associatedLocationRef xlink:href="#t123"/> <!-- refers to a trenchwall feature -->

 <activityPosition>

 <TrenchWallPosition gml:id="bpp2">

 <linearElementPosition>

 <gml:LineString gml:id="pl2">

 <gml:posList srsName="#srt123" srsDimension="2">5 7 5 9</gml:posList>

 </gml:LineString>

 </linearElementPosition>

 </TrenchWallPosition>

 </activityPosition>

</Sampling Activity>

For boreholes, the BoreholePosition object substitutes in for the activityPosition, wherease

TrenchWallPosition is used if the sampling activity occurs at a TrenchWall feature.

In DIGGS 1.2, position objects are defined for boreholes, trial pits, and trench walls. For borehole

positions, there is a choice of two properties (only one can be used for a given position) - either

measuredDepth (a point position) or depthInterval (a line string that defines an interval within the

hole). Note that top and base are no longer used, as top and base are inferred from the linestring

definition. In fact, while convention will probably define depth intervals from top to base, they

could be defined from base to top - it doesn't matter. What's relevant in the position is the location

of the interval within the borehole. Trial pit position objects use the same position properties

(depthInterval and measuredDepth), and add a stratumReference property as it is used in AGS.

Trench walls work a bit differently. Positions on a trench wall can either be points, linear elements

(eg. a channel sample can be defined as a line on the trench wall surface), or areas (polygons)

defined on the trench wall surface (layers would be encoded this way). Trench wall position

DIGGS V2.0.a Documentation

 Page 314

objects therefore offer a choice of a pointPosition (point), linearElementPosition (linestring), or

surfacePosition (polygon) -- all defined in the linear reference system for the trench wall.

Ok, so now to the referencing part for trench walls. Attached is a diagram that can (hopefully)

help define the terms.

Trench walls are typically logged as planar features (or at least modeled that way) and the

construct in DIGGS is designed to support this representation - positions on the trench wall are

represented by coordinate pairs in the relative reference system that are distances along the

referenceEdge, and distance along the offsetVector (see diagram), so these two properties define

the orientation of the relative coordinate system of the trench. In contrast, positions in a borehole

are represented by a single numeric value that represents distance along the centerLine from the

reference point only. In the top diagram, if we assume it represents a vertical trench wall on an E-

W bearing, the referenceEdge is defined as a vertical line (straight in this example), and the

vectorOffset is a horizontal line with an E-W bearing. It's perfectly ok to reverse the definitions

with the referenceEdge along the horizontal and the vector along the "vertical" dimension. The

only difference would be that the coordinate pairs would reverse in the position properties -

distances along the reference edge are given first in the coordinate double, then the offset

distance. It's also not required that the coordinate system that is set up by defining the

DIGGS V2.0.a Documentation

 Page 315

referenceEdge and offsetVector be orthogonal, although I'm not sure why someone would want

to do that...

Even though the trench wall is modeled as a planar feature, that feature can have any strike and

dip orientation in space (doesn't have to be vertical), nor does it strictly have to be a flat planar

surface. This is because the reference edge can be any curve - not just a straight linear segment

- and it is defined in geographic space. The vectorOffset, however, is a vector, and can only be a

straight line with bearing and plunge defined in the context of the 3D CRS (this is a GML limitation

of the linearReferenceSystem constructs). So, you could model corrugated roofing or even a

cylindrical trench wall with this construct, but not a sphere, or any type of complex surface. A

GML 3.3 aware application will be able to manage the transformations to plot the positions of

observations in true geographic space.

In typical practice, though, we represent a trench as a truly planar surface, with the vertical

dimension being "down" the face of the trench wall and the horizontal dimension along the

bearing of the wall, and this construct handles this well. In the field, the old way of logging

trenches here is the US was to lay out a string grid that is used to scale observations that are

drawn on a log sheet.

DIGGS V2.0.a Documentation

 Page 316

DIGGS V2.0.a Documentation

 Page 317

More recently, features are often shot in using a total station or other surveying means, usually

using a local coordinate system that is oriented (in the x-y) parallel and perpendicular to the

average bearing of the trench face (or can be transformed into trench-parallel and trench-

perpendicular coordinates. I'd be interested in hearing of other practice standards that may go on

in the UK to make sure this structure will work for those, too. Either way, positions can be

recorded (or digitized from a log sheet) in an orthogonal coordinate system and the trench wall

construct handles this well. When surveyed measurements are then translated for drafting, they

are usually projected onto a planar surface (eg. the piece of paper). If the logging coordinates are

set up or transformed so that x is parallel to the trench wall, then the position coordinate pairs are

plotted using the x-z coordinates and the y-values (the dimensions into or out of the paper), are

ignored, and if the trench is straight, are insignificant. For analog (paper) trench logs, observation

positions can be digitized and translated to true distance units directly for transfer via DIGGS as

coordinate pairs in the position properties. Currently, DIGGS doesn't support true

storage/transmission of the full 3D position of observations on a trench wall that could be derived

from a total station. To do so would require defining a different location feature type that can

handle an irregular surface - GML doesn't currently handle such a feature in a relative sense,

although there are constructs that can do so in absolute coordinate space.

Below is an XML snippet of a trench wall feature, as an example of how the definition of a trench

wall might be encoded. We can go over this when we talk on Wed.

 <TrenchWall gml:id="a22">

 <gml:name>My trench</gml:name>

 <gml:identifier codeSpace="usgs">urn:DIGGS:def:fi:USGS:usgs_a22</gml:identifier>

 <projectRef xlink:href="#p1"/>

 <groupRef xlink:href="#g1" identifierRef="urn:DIGGS:def:fi:USGS:usgs_g1"/>

 <referencePoint>

 <gml:Point srsName="urn:ogc:def:crs:EPSG::7405" srsDimension="3" gml:id="a34">

 <gml:pos>33 -117 10</gml:pos>

 </gml:Point>

 </referencePoint>

 <referenceEdge>

 <gml:LineString srsName="urn:ogc:def:crs:EPSG::7405" gml:id="ply1_top">

 <gml:posList>33 -117 10 33.1 -117.1 10</gml:posList>

 </gml:LineString>

DIGGS V2.0.a Documentation

 Page 318

 </referenceEdge>

<!-- In this case the reference edge is horizontal and lies along the top of the trench -->

 <featureExtent>

 <gml:Polygon srsName="urn:ogc:def:crs:EPSG::7405" gml:id="ply1" srsDimension="3">

 <gml:exterior>

 <gml:LinearRing>

 <gml:posList>33 -117 10 33.2 -117 10 33.2 -117.2 0 33 -117.2 0 33 -117 10</gml:posList>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

 </featureExtent>

 <planarReferencing>

 <LinearSpatialReferenceSystem gml:id="lsrs002">

 <g3.3:linearElement xlink:href="#ply1_top"/>

 <g3.3:lrm>

 <g3.3:LinearReferencingMethod gml:id="lr123">

 <g3.3:name>chainage</g3.3:name>

 <g3.3:type>absolute</g3.3:type>

 <g3.3:units uom="m"/>

 </g3.3:LinearReferencingMethod>

 </g3.3:lrm>

 <g3.3:vectorOffsetExpression>

 <g3.3:offsetVector srsName="urn:ogc:def:crs:EPSG::7405">0 0 -1</g3.3:offsetVector> <!-- Offset is

vertical down>

 </g3.3:vectorOffsetExpression>

 <linearElementAccuracy>

 <PositionalAccuracy>

 <measurementMethod>GPS</measurementMethod>

 <result uom="m">5</result>

 </PositionalAccuracy>

 </linearElementAccuracy>

 <linearReferencingMethodAccuracy>

 <PositionalAccuracy>

 <measurementMethod>tape</measurementMethod>

 <result uom="ftUS">1</result>

 </PositionalAccuracy>

 </linearReferencingMethodAccuracy>

 </LinearSpatialReferenceSystem>

 </planarReferencing>

 <constructionMethods>

 <ConstructionMethod gml:id="cm22">

 <gml:description>backhoe</gml:description>

 <remarks>

 <Remark>

 <content>Backhoe was brand new and worked like a charm</content>

 </Remark>

 </remarks>

 </ConstructionMethod>

 </constructionMethods>

 </TrenchWall>

DIGGS V2.0.a Documentation

 Page 319

 Meeting Notes:

 Summary of key concepts of on encoding spatial data as implemented in DIGGS v1.2:

o The locations of boreholes (identified by a point at the top of hole),

trenchwalls/trialpits (identified by a polygon area), and other DIGGS “location

features”:

 Are encoded in real-world 3D coordinates (e.g. latitude, longitude,

elevation).

 Use GML 3.2 schema structures.

 Can be interpreted by GML 3.2 aware applications – Snowflake GML

Viewer (3D), Gaia (2D only).

 Will be visualized in GoogleEarth tool.

o The Linear Referencing method is used to identify the location of observations

within the borehole or on the trenchwall. This method:

 Creates a localized spatial reference system within the borehole or

trenchwall.

 For boreholes – a curve is defined in real-world coordinates; the

depth (or interval) along that defined path serves as a localized

spatial reference system.

 For trenches – a curve and a polygon are defined in real-world

coordinates; the depth (or interval) along that defined path and a

vector offset serves as the localized spatial reference system.

 Is built from GML 3.3 draft standards.

o Uses GML 3.3 which has not yet been published.

 Concerns raised about the Linear Referencing method during the meeting:

o There’s currently no commercial software that supports GML 3.3 linear

referencing. (Likewise, there’s no commercial software that currently supports

the “relative” engineering referencing structures used in borehole and trenchwall

logging practices.)

o Support for this kind of referencing will need to be built into geotechnical

software.

o This method will not handle a trenchwall face with XYZ geometry, e.g. mapping a

spherical surface. However, there was general concurrence that for most cases,

forcing a planar mapping model, as proposed, would handle most practical use

cases.

o There were questions as to whether this method supports a reference line that

closes in on itself. E.g. cylindrical wall of a shaft where the reference line is the

circular cross section line and the vector is used for depth encoding. ACTION:

Discuss this issue with Burggraf.

o T. Spink expressed reservations with use of this GML 3.3 construct in DIGGS,

since it has not been released as a standard, and that DIGGS may be adopting

this too early.

DIGGS V2.0.a Documentation

 Page 320

o ACTION: Turner will present this to the software vendors to assess if this

will be a barrier to implementation in commercial products.

o If DIGGS doesn’t use the GML 3.3 linear referencing , what are the alternatives?

 Use 3.2 or 3.0? This presents a different, but challenging, set of issues:

 Requires more verbose XML in order to achieve similar 3.3

functionality.

 3.0 is not an ISO standard; 3.2 is ISO standard; applications that

are implementing GML are going with 3.2.

 Create DIGGS specific structure? This would result in an encoding

approach equally unsupported by software.

 The approach used for trenchwalls could also be used to map other geotechnical

features, such as tunnels or shafts.

o For a tunnel, the cross sectional outline (“horseshoe”) is the reference edge

o Vector offset is the position along the centerline of the tunnel

o Issues:

 Cross section can change shape.

 Tunnels aren’t straight, but the vector offset must be in the same

direction.

DIGGS V2.0.a Documentation

 Page 321

 In this example the sand layer get represented twice when the tunnel is

“unwrapped”. ACTION: Ask Burggraf on how to associate the two

represented sand layers as being the same.

o Mapping tunnels isn’t likely to be a common use case at the moment. However,

it is useful to explore the limitations on the linear referencing approach to ensure

that DIGGS remains extensible in the future.

 Issue with encoding stratums on trench wall face:

o In example below, the yellow area represents a sand layer as a polygon.

However, common practice is to define layer boundaries, which, in a cross-

section in a trench, would be a polyline upper boundary and another polyline

lower boundary.

o Recommendation is to use a construct similar to the borehole with “top” and

“bottom” to define the interval layer.

o Use top and bottom bounding lines to represent stratum limits

o Consideration needs to be given to capture that the bottom boundary may not

necessarily be the same as a layer bottom. This happens with boreholes too –

bottom of the drilled hole may not be the same thing as the bottom of a layer.

ACTION: Ask Burggraf on how to capture this.

E.40 Teleconference Meeting Notes 2010-12-09

Date: December 9, 2010

Time: 7:30 AM – 10:00 AM (PST)

DIGGS V2.0.a Documentation

 Page 322

Participants: Loren Turner

Dan Ponti

David Burggraf

Yang Zhu

Not Available: Chris Bray

Agenda: DIGGS-Galdos weekly status meeting.

Notes:

 An issue was identified with the AllUnits element, possibly related to the use of the union

structure when mapping. Yang Zhu (COSMOS contractor) has been working to map

Caltrans CPT data sets to DIGGS v1.2.4g. He encountered an issue while attempting to

generate an XSLT mapping using Altova’s MapForce 2009 software. From Zhu’s email:

I created a mapping project with MapForce, ComosDIGGS schema and DIGSS1.2a. Then, I

connected only 1 element from cosmosDIGGS to DIGGS1.2a.

The following error occured when MapForce tried to create an XSLT file from the mapping.

 ERROR G102: Internal error: Base type ({http://schemas.diggsml.com/1.2a}) of

{http://schemas.diggsml.com/1.2a}AllUnits missing

Place where the error might be:

Element AllUnits is defined in Kernal.xsd with a union of many other simple data types, as followed:

 <simpleType name="AllUnits">

 <restriction>

 <simpleType>

 <union memberTypes="witsml:anglePerLengthUom witsml:anglePerTimeUom

witsml:areaPerAreaUom witsml:areaUom witsml:densityUom witsml:dimensionlessUom

witsml:dynamicViscosityUom witsml:electricCurrentUom witsml:electricPotentialUom

witsml:energyPerAreaUom witsml:equivalentPerMassUom witsml:forcePerLengthUom

witsml:forcePerVolumeUom witsml:forceUom witsml:frequencyUom witsml:illuminanceUom

witsml:lengthPerLengthUom witsml:lengthUom witsml:magneticFieldStrengthUom

witsml:magneticInductionUom witsml:massConcentrationUom witsml:massPerLengthUom

witsml:massUom witsml:MeasuredDepthUom witsml:momentOfForceUom witsml:PercentUom

witsml:perLengthUom witsml:planeAngleUom witsml:powerUom witsml:pressureUom

witsml:relativePowerUom witsml:specificVolumeUom witsml:timeUom witsml:velocityUom

witsml:volumeFlowRateUom witsml:volumePerVolumeUom witsml:volumeUom"/>

 </simpleType>

 </restriction>

 </simpleType>

What I did:

I found most of the union members were defined in witsml/1.3.1.1/typ_quantityClass.xsd. However,

when I compared the members in the union with all the types defined in

DIGGS V2.0.a Documentation

 Page 323

witsml/1.3.1.1/typ_quantityClass.xsd, I found a couple of differences. First, accelerationLinearUom

and thermodynamicTemperatureUom were defined in witsml/1.3.1.1/typ_quantityClass.xsd, but did

not appear in AllUnits. Second, MeasuredDepthUom, PercentUom were found in AllUnits, but were

not defined in witsml/1.3.1.1/typ_quantityClass.xsd.

Problem persists when I tried to redefined the AllUnits by randomly pick 1 or 2 members to keep, and

delete the rest of the union members:

 <simpleType name="AllUnits">

 <restriction>

 <simpleType>

 <union memberTypes="witsml:anglePerLengthUom

 </simpleType>

 </restriction>

 </simpleType>

Problem solved if I redefined the AllUints in the following manner:

 <simpleType name="AllUnits">

 <restriction base="string">

 <maxLength value="64"/>

 <pattern value="[^]*"/>

 </restriction>

 </simpleType >

Action taken:
I proceeded mappings with this temporary fix as I couldn't seem to be able to fix the

problem.

 ACTION ITEM: Burggraf will look into this issue further and verify if the union construct is

the problem. Send to Yang to test that it works in MapForce

 Possible solutions, if the union is the issue:

o Create a AllUnits type within the diggs namespace that combines all units,

systematically extracted from the WITSML schemas.

o Create a new schema in diggs called “units” which includes all witsml units.

 No meeting next week. Burggraf out of town.

E.41 Teleconference Meeting Notes 2011-01-06

Teleconference Meeting Notes

Date: January 6, 2011Time: 8:30 AM – 11:00 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Andrew Louis

Agenda: DIGGS to KML tool & DIGGS to Excel Tool Discussion

Discussion:

DIGGS V2.0.a Documentation

 Page 324

DIGGS to KML Tool

Excel file is used to maintain GoogleEarth KML mapping display configuration settings. The

XSLT file uses the Excel XML file to obtain these settings used during the transformation.

Features can be configured in this worksheet. This is how the points, lines, and polygons are

presented in the GoogleEarth interface. If nothing is entered, the default GoogleEarth style will

be used.

DIGGS V2.0.a Documentation

 Page 325

DIGGS V2.0.a Documentation

 Page 326

Balloon info is identified in the spreadsheet column “Balloons”.

It currently shows the gml:id, but it would be good to resolve the xlink href to show the feature’s

name, which is likely more meaningful to the user.

DIGGS V2.0.a Documentation

 Page 327

A worksheet maps the xlink:href to the a display name that makes more sense to the reader.

DIGGS V2.0.a Documentation

 Page 328

Codes can be defined, e.g. for lithology layers.

DIGGS V2.0.a Documentation

 Page 329

Codes further defined and assigned to colors.

DIGGS V2.0.a Documentation

 Page 330

These codes are used to display in GoogleEarth.

This shows the lithology associated with the bounding box of the project, but should really be

associated with the borehole location feature. Suggested changes:

 Borehole feature will be a single polyline using default GE display.

 Lithology layers will be line segements.

 Configuration will specify line color and line thickness.

DIGGS V2.0.a Documentation

 Page 331

KMZ file is organized (see left sidebar)

DIGGS V2.0.a Documentation

 Page 332

Raised ground overlay.

Fetches surface tiles from open-source web map service, Worldwind.

Issues:

 Ground overlay tile should be about the size of the project boundary. Need to crop the

tiles? This might require a lot more work though.

 Overlay should be at elevation approximately at top of location features.

 Consider holding off on the current ground overlay approach if requires lots of work.

 Alternatively, display a overlay surface with a KML ground overlay using tessalate

parameter – Galdos will look into this option further.

DIGGS V2.0.a Documentation

 Page 333

Execute the DIGGS to KML conversion, using a Java application.

DIGGS V2.0.a Documentation

 Page 334

DIGGS to Excel Tool

Burggraf presented issues with Excel mapping. The translation is challenging – the nested

structures in DIGGS requires specific mapping in how to present rows and columns of data in the

Excel.

Burggraf suggests:

 Separate worksheets for each object

 Do some specific nesting for table data to reduce number of worksheets

Burggraf will

 Redo the translation in an automatic way to create a first draft spreadsheet.

 Team will look at this first draft and identify worksheets to consolidate.

 Target completion is next week – will email.

 Meeting on 1/18 to recap.

E.42 Teleconference Meeting Notes 2011-01-28

Date: January 28, 2011

Time: 8:00 AM – 11:00 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Andrew Louis

Agenda: DIGGS schema update; DIGGS to KML tool & DIGGS to Excel Tool Discussion

Discussion:

 Trenchwall encoding approach:

o A layer’s position is defined by:

 Top intersection (line)

 Base insection (line)

 Representative surface

 Defines the left and right edges

 Combines with the top and bottom to create a polygon

 All three are mandatory

o ACTION: Burggraf review the trenchwall encoding schema changes. Implement

curve orientation. Review changes to make sure valid with GML rules. Issue

new version v1.2.4i.

o ACTION: Ponti/Turner close loop with Spink on what was done.

 DIGGS to KML tool

o Work planning -- approx 5 working days remaining

o ACTION: Ponti/Turner review spreadsheet and provide feedback to Galdos.

 DIGGS to Excel

o ACTION: Ponti and Turner modify spreadsheet to represent how we want to see

the data presented.

DIGGS V2.0.a Documentation

 Page 335

 DIGGS schema changes for log data:

o Harmonize structure between geophysical logs and CPT

o ACTION: Ponti will make changes. Burggraf review changes to make sure valid

with GML rules and issue v1.2.5.

E.43 Teleconference Meeting Notes 2011-02-03

Date: February 3, 2011

Time: 8:00 AM – 9:30 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Chris Bray

Roger Chandler

Agenda: DIGGS schema update; DIGGS to KML tool & DIGGS to Excel Tool Discussion

Discussion:

 Briefing to Bray and Chandler on KML and Excel tools.

o ACTION: Turner will provide files to Bray and Chandler to review.

 No progress this week from last week’s meeting. Continue working on action items from

last week’s meeting.

o Trenchwall encoding approach:

 ACTION: Burggraf review the trenchwall encoding schema changes.

Implement curve orientation. Review changes to make sure valid with

GML rules. Issue new version v1.2.4i.

 ACTION: Ponti/Turner close loop with Spink on what was done.

o DIGGS to KML tool

 ACTION: Ponti/Turner review spreadsheet and provide feedback to

Galdos.

o DIGGS to Excel

 ACTION: Ponti and Turner modify spreadsheet to represent how we

want to see the data presented.

o DIGGS schema changes for log data:

 ACTION: Ponti will make changes. Burggraf review changes to make

sure valid with GML rules and issue v1.2.5.

E.44 Teleconference Meeting Notes 2011-02-09

Date: February 9, 2011Time: 8:00 AM – 9:30 AM (PST)

Participants: Loren Turner

DIGGS V2.0.a Documentation

 Page 336

Dan Ponti

David Burggraf

Agenda: DIGGS schema update; DIGGS to KML tool & DIGGS to Excel Tool Discussion

Discussion:

 Trenchwall encoding approach:

o Ponti implemented changes to trenchwall encoding in DIGGS v1.2.4h and

provided to Burggraf.

o Burggraf reviewed the trenchwall encoding schema changes and implemented

the OrientableCurve element (part of GML 3.2), provided in DIGGS v.1.2.4i, as in

the example snippet.

<representativeSurface>

 <gml:Polygon gml:id="lt1-p">

 <gml:exterior>

 <gml:Ring>

 <gml:curveMember xlink:href="#twp-int-11"/>

 <!--Top edge -->

 <gml:curveMember>

 <gml:LineString gml:id="lt1-1">

 <!--Right edge -->

 <gml:posList srsDimension="2" srsName="#lsrs002">50 1 50

 4</gml:posList>

 </gml:LineString>

 </gml:curveMember>

 <gml:curveMember>

 <gml:OrientableCurve gml:id="OC_twp-int-12" orientation="-">

 <gml:baseCurve xlink:href="#twp-int-12"/>

 </gml:OrientableCurve>

 </gml:curveMember>

 <!--Basal edge in reverse orientation -->

 <gml:curveMember>

 <gml:LineString gml:id="lt1-2">

 <!--Left edge -->

 <gml:posList srsDimension="2" srsName="#lsrs002">0 5 0 2</gml:posList>

 </gml:LineString>

 </gml:curveMember>

 </gml:Ring>

 </gml:exterior>

 </gml:Polygon>

 </representativeSurface>

o Ponti added trueTopObserved and trueBaseObserved boolean properties

(optional) to the AbstractLocationPosition base class. This allows the DIGGS

instance author to state whether the top or base are known. There was

discussion as to the need for a “default” state. We decided that there should be

no default, as the absence of this implies that the value is not known or could not

be determined.

DIGGS V2.0.a Documentation

 Page 337

 <sequence>

 <element minOccurs="0" name="trueTopObserved" type="boolean"

default="true">

 <annotation>

 <documentation>True or false, indicating whether the geometry of the top

pasition of

 the feature represents the true top of the feature being defined (true) or (false)

 whether the top represents the upper extent of the feature that is defined by the

 extent of the location feature itself.</documentation>

 </annotation>

 </element>

 <element minOccurs="0" name="trueBaseObserved" type="boolean"

default="true">

 <annotation>

 <documentation>True or false, indicating whether the geometry of the top

pasition of

 the feature represents the true top of the feature being defined (true) or (false)

 whether the top represents the upper extent of the feature that is defined by the

 extent of the location feature itself.</documentation>

 </annotation>

 </element>

 </sequence>

o Ponti explained that layerIntersectionPosition is of type

LayerIntersectionPropertyType that refers to a LayerIntersections object of type

LayerIntersectionType. This type inherits from diggs:AbstractObjectType and

adds three mandatory properties: a) layerTopIntersection

(MultiCurvePropertyType), b) layerBaseIntersection (MultiCurvePropertyType),

and c) representativeSurface (1..n; SurfacePropertyType). Burggraf identified a

design inconsistency and suggested the following modification, which was

adopted:

 <sequence>

 <element name="layerTopIntersection" type="gml:CurvePropertyType"

maxOccurs="unbounded">

 <annotation>

 <documentation>The position of the top surface of a layer (a volume of earth material)

 that intersects a trench wall. Depending on how a trench wall is encoded, there

 could be multiple line strings that define this top surface.</documentation>

 </annotation>

 </element>

 <element name="layerBaseIntersection" type="gml:CurvePropertyType"

maxOccurs="unbounded">

 <annotation>

 <documentation>The position of the basal surface of a layer (a volume of earth

 material) that intersects a trench wall. Depending on how a trench wall is encoded,

 there could be multiple line strings that define this basal surface.</documentation>

 </annotation>

 </element>

DIGGS V2.0.a Documentation

 Page 338

 <element name="representativeSurface" type="gml:SurfacePropertyType" maxOccurs="unbounded">

 <annotation>

 <documentation>One or more polygons that represent the layer volume in the plane of

 the trench wall. This would typically be a ring polygon with curve members that

 consist of the layer top intersection, layer bottom intersection, and two trench

 wall edges.</documentation>

 </annotation>

 </element>

 </sequence>

o ACTION: Ponti will implement changes to schema and include in the v1.2.5

release. Burggraf will review changes and validate.

o ACTION: Ponti/Turner close loop with Spink on recent changes to trenchwall

encoding.

 DIGGS to KML tool

o Turner has been reviewing and iterating with Galdos on the styling configuration

for the KML tool. A second version was issued yesterday.

o Java runtime issues seem to be resolved in the latest version.

o ACTION: Ponti/Turner/Bray continue to review the conversion tool and provide

feedback to Galdos.

 DIGGS to Excel

o No review has conducted yet on this.

o ACTION: Ponti and Turner modify spreadsheet to represent how we want to see

the data presented. Provide feedback to Galdos.

 DIGGS schema changes for lab testing and log data:

o ACTION: Turner and Ponti will meet next week Tuesday to discuss approach for

schema for lab testing and insitu log data. Ponti will develop sample schema to

see how it looks. We’ll discuss this at next Thursday’s status meeting. Changes

will eventually be part of DIGGS v1.2.5.

E.45 Teleconference Meeting Notes 2011-02-17

Date: February 17, 2011

Time: 8:00 AM – 8:30 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Agenda: DIGGS schema update; DIGGS to KML tool & DIGGS to Excel Tool Discussion

Discussion:

DIGGS V2.0.a Documentation

 Page 339

 Turner and Ponti met earlier in the week to discuss the test data structure. The proposed

structure would focus on the results rather than the process. We’d create an Abstract

Test Result that has the following:

o Derives from DIGGS abstract feature

o Sits at top level of hierarchy

o Result property contains result object (e.g. density, gravity, etc.)

o Process property, can reference more than one test object

o Reference to a location, mandatory

o Reference to a sample, optional

o Position(s) object, mandatory

 An example instance:

<MoistureContent gml:id = “”/>

 <location xlink:href = “#b123”/>

 <sampleRef xlink:href = “#s345”/>

 <position>

 <BoreholePosition>

 …

 …

 </BoreholePosition>

 </position>

 <result>

 <MoistureContentResult gml:id=””>

 <result uom=”%”>22.4</result>

 <isNatural>true</isNatural>

 </MoistureContentResult>

 </result>

 <process>

 <MoistureContentTest gml:id=””>

 <tare>55.5</tare>

 <tareplussoil>66.6</tareplussoil>

 <specifications>

 <description>

 <equipment xlink:href = “#abc123”>

 </MoistureContentTest>

 </process>

</MoistureContent>

 Turner began to look at results and processes by compiling a matrix.

 Ponti will send Burggraf some example instances that show how the revised test results

schema might look. Burggraf will check to make sure complies with GML and fits within

the schema design.

 We still need to follow up with Chandler on the monitoring structure.

 Turner will set up meetings with GMS and Core SIG to provide an update on the status of

work on DIGGS.

DIGGS V2.0.a Documentation

 Page 340

 Turner emailed initial feedback on Excel tool:

o The table data (e.g. for CPT, geophysics) doesn't import into the Excel, likely due

to the size of the block of data. Modify how this is mapped to Excel such that the

data in the block is parsed by the delimiters, where each data point occupies a

single cell. Ideally, column data (e.g. depths from the coverage element) would

be presented in a single column, and subsequent data presented in adjacent

columns).

o In the "Attribute Name" column:

 Remove the "@" symbol that preceeds the name of the attribute.

 Right justify attributes within the cells. Use a colon, e.g. "Identifier Ref:"

 Don't display the type, such as [Text], [Inline Object/Feature]. Just leave

cell blank.

 Don't display "@XLink HREF" -- leave the cell blank where ever that

occurs, since the first column indicates it is a reference anyways.

 Maybe, don't show the namespace prefix, since the color coding

indicates it. e.g. instead of "@GML ID", use "ID"

 Turner will continue to review KML and Excel tools.

E.46 Teleconference Meeting Notes 2011-03-24

Date: March 24, 2011

Time: 8:00 AM – 9:30 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Chris Bray

Agenda: DIGGS schema update; DIGGS to KML tool & DIGGS to Excel Tool Discussion

Discussion:

 Impact of GML 3.3 on DIGGS.

o GML 3.3 draft has gone through major reviews through the OGC and needs to be

ratified, likely in September 2011. GML 3.3 is part 2 of the ISO standard

established under GML 3.2.

o Linear referencing changed a bit from the version we implemented in v1.2

 GML 3.3 has been modularized into 3 namespaces.

 Offset vector is now described by angle, not a vector.

 Compact geometry encoding – not really applicable to DIGGS.

o GML needs to be changed.

o Other schemas that import need to import the multiple 3.3 namespaces.

DIGGS V2.0.a Documentation

 Page 341

o ACTION: Burggraf to modify the GML profile and generate DIGGS v1.2.4j. Also,

will point out where the changes impact DIGGS. Provide by next week’s

meeting.

 Status of KML and Excel tools.

o Jeremy fixed the one issue with the referencing link in the Excel tool.

o GML 3.3 changes will require minor changes to Excel and KML tools.

 Offset vector change will impact KML for the trenchwall.

 ACTION: Make the changes to the tools for v1.2.4j. Update the

testinstance.xml file. Provide by next week’s meeting.

 No likely changes in the Excel tool.

o Approx 2 days remaining for Excel work, 5 days for KML work. Hold off on

further work on this until we make changes in 1.2 and 2.0.

 Punchlist to finish DIGGS v1.2:

o Modifications to the test data structure. Ponti and Turner to talk early next week.

o Modifications to the monitoring data structure.

o Finalize codelists.

o Update the 20 examples.

o Implement recently updated GML 3.3 (ISO) structures.

o Create schema documentation.

 Priorities for remaining project term?

o Schematron assertions defined.

o Web authoring tool

 Next week Thursday meeting at 8:00 AM

Date: March 24, 2011

Time: 8:00 AM – 9:30 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Chris Bray

Agenda: DIGGS schema update; DIGGS to KML tool & DIGGS to Excel Tool Discussion

Discussion:

 Impact of GML 3.3 on DIGGS.

o GML 3.3 draft has gone through major reviews through the OGC and needs to be

ratified, likely in September 2011. GML 3.3 is part 2 of the ISO standard

established under GML 3.2.

o Linear referencing changed a bit from the version we implemented in v1.2

 GML 3.3 has been modularized into 3 namespaces.

 Offset vector is now described by angle, not a vector.

 Compact geometry encoding – not really applicable to DIGGS.

o GML needs to be changed.

DIGGS V2.0.a Documentation

 Page 342

o Other schemas that import need to import the multiple 3.3 namespaces.

o ACTION: Burggraf to modify the GML profile and generate DIGGS v1.2.4j. Also,

will point out where the changes impact DIGGS. Provide by next week’s

meeting.

 Status of KML and Excel tools.

o Jeremy fixed the one issue with the referencing link in the Excel tool.

o GML 3.3 changes will require minor changes to Excel and KML tools.

 Offset vector change will impact KML for the trenchwall.

 ACTION: Make the changes to the tools for v1.2.4j. Update the

testinstance.xml file. Provide by next week’s meeting.

 No likely changes in the Excel tool.

o Approx 2 days remaining for Excel work, 5 days for KML work. Hold off on

further work on this until we make changes in 1.2 and 2.0.

 Punchlist to finish DIGGS v1.2:

o Modifications to the test data structure. Ponti and Turner to talk early next week.

o Modifications to the monitoring data structure.

o Finalize codelists.

o Update the 20 examples.

o Implement recently updated GML 3.3 (ISO) structures.

o Create schema documentation.

 Priorities for remaining project term?

o Schematron assertions defined.

o Web authoring tool

 Next week Thursday meeting at 8:00 AM

E.47 Teleconference Meeting Notes 2011-04-01

Date: April 1, 2011

Time: 8:00 AM – 9:00 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Agenda: DIGGS schema update; DIGGS to KML tool & DIGGS to Excel Tool Discussion

Discussion:

 Burgraff provided revised DIGGS v1.2.4j which incorporates GML 3.3. Updated the

testinstance.xml file.

 Status of KML and Excel tools.

o ACTION: Make the changes to the tools for v1.2.4j. Update the testinstance.xml

file. Provide by next week’s meeting.

DIGGS V2.0.a Documentation

 Page 343

 Punchlist to finish DIGGS v1.2:

o Modifications to the test data structure. Ponti and Turner to talk early next week.

o Modifications to the monitoring data structure.

o Finalize codelists.

o Update the 20 examples.

o Implement recently updated GML 3.3 (ISO) structures.

o Create schema documentation.

 Turner presented preliminary work on codelist spreadsheets. ACTION: Finalize draft

prior to next meeting.

 Turner and Ponti meet next Tuesday to discuss lab test data schema

 Next week Thursday meeting at 8:00 AM

E.48 Teleconference Meeting Notes 2011-04-07

Date: April 7, 2011

Time: 8:00 AM – 9:00 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Agenda: DIGGS schema update; DIGGS to KML tool & DIGGS to Excel Tool Discussion

Discussion:

 Some issues identified in GML 3.3 linear referencing structure. Specifically the offset

plane, perpendicular to the line string, creates an issue when referencing points at angle

breaks in the line string. The GML team will fix this quickly, likely in the next few days.

The new changes will be propagated throughout DIGGS and into the tools and

testinstance. Likely change will be to go back to the vector approach, or a choice

between vector or planar. DIGGS will restrict via profile to use vector approach.

 ACTION: Make the changes to the schemas, tools, and the testinstance.xml file.

Provide when done in DIGGS v1.2.4k.

 Recap – punchlist to finish DIGGS v1.2:

o Modifications to the test data structure. Ponti and Turner to talk early next week.

o Modifications to the monitoring data structure.

o Finalize codelists.

o Update the 20 examples.

o Implement recently updated GML 3.3 (ISO) structures.

o Create schema documentation.

 Turner is still working on codelist spreadsheets – about half completed. ACTION:

Finalize draft prior to next meeting.

 Next week Friday meeting at 8:00 AM.

DIGGS V2.0.a Documentation

 Page 344

E.49 Teleconference Meeting Notes 2011-05-05

Date: May 5, 2011

Time: 8:00 AM – 10:00 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Agenda: Discuss DIGGS codelist work

Discussion:

 Turner briefed the team on recent work on the codelists. Codetypes listed in the

spreadsheet were located within the schema, matched to an existing codelist if available,

categorized by type A/B/C, assigned to be with or without authority, and given a

recommendation on any actions. Most of this codelist has been done, with a dozen or so

remaining. Observations so far:

o Most codetype elements will likely be without authority. That is, the codespace

will not be required on most of these elements.

o There will be a handful of elements requiring codespace, such as lithology codes.

o Most of the codetype elements fell into categories “B” or “C”. No type “A”

elements identified so far.

DIGGS V2.0.a Documentation

 Page 345

o Most of the codes will be eliminated from the standard DIGGS distribution. In the

future each authority will have a separate codelist that can be referenced by the

codespace attribute. Those codelists will be created by the DIGGS team and

posted to the DIGGS site initially, serving as an example of how the codelists are

assembled, referenced, and maintained.

o The enumerations in the spreadsheet seemed to be missing a lot of “Enum” type

elements. This needs to be looked at further.

 ACTIONS:

o Burggraf regenerate enumeration spreadsheet.

o Turner to complete the remaining codelist evaluation.

o Ponti to review Turner’s work and discuss next week to reach consensus.

o Burggraf to implement codelist recommendations, including:

 Create individual codelist for each authority.

 Modify codetype elements per recommendations

 Modify enumerations per recommendations

 Use of “status”? Talk with Roger about this.

 Turner identified a potential issue with the implementation of the constituent element.

o In Caltrans practice the constituent is typically used to describe a sample or layer

lithology. In the following example the underlined text would be a constituent of a

layer. Note that the constituent includes descriptive terms for particle aspect

ratio (“flat and elongated”) and particle shape (“subrounded to rounded”).

DIGGS V2.0.a Documentation

 Page 346

Well-graded SAND with GRAVEL (SW); medium dense; brown and light gray; wet; 75% SAND, from

coarse to fine, rounded; 20% GRAVEL, coarse, subrounded to rounded, flat and elongated; 5%

fines; weak cementation.

o In DIGGS, the particle aspect ratio and shape are not part of the constituent

element. This is because the constituent can be used to describe more than just

lithologic information.

o The proposed solution is to create two types of constituent elements, one specific

to lithologic constituents (containing the particle elements), and another that’s

generic and could be used to describe all other constituents.

o ACTION: Need to identify how we do this, and who will do this. Turner and

Ponti should discuss this further to see if the proposed solution works for other

kinds of scenarios before proceeding.

 Issue identified in prior meeting:

o Some issues identified in GML 3.3 linear referencing structure. Specifically the

offset plane, perpendicular to the line string, creates an issue when referencing

points at angle breaks in the line string. The GML team will fix this quickly, likely

in the next few days. The new changes will be propagated throughout DIGGS

and into the tools and testinstance. Likely change will be to go back to the vector

approach, or a choice between vector or planar. DIGGS will restrict via profile to

use vector approach.

o ACTION: If not already done, Burggraf make the changes to the schemas, tools,

and the testinstance.xml file. Provide when done in DIGGS v1.2.4k.

 Recap – punchlist to finish DIGGS v1.2:

o Modifications to the test data structure.

o Modifications to the monitoring data structure.

o Finalize codelists.

o Update the 20 examples.

o Implement recently updated GML 3.3 (ISO) structures.

o Create schema documentation.

DIGGS V2.0.a Documentation

 Page 347

 Next group meeting will be Thursday 5/19/11 at 8:00 AM.

 Dan & Loren will meet on Thursday 5/12/11 at 9:00 AM to finalize work on codelist and

lab test data structure.

E.50 Teleconference Meeting Notes 2011-05-19

Date: May 19, 2011

Time: 8:00 AM – 10:00 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Roger Chandler

Agenda: Discuss proposal for revised DIGGS test data structure

Discussion:

 Ponti and Turner have been working on a revised approach for encoding lab and insitu

test data in DIGGS that more closely resembles the structure used for the current CPT

data.

 Ponti implemented the major structural changes in the DIGGS kernel, packed in 1.2.4.k

 Turner has been evaluating each test, comparing with AGS4 and State DOT practices,

and creating new test procedures as needed.

 Ponti explained new test data structure to group. (From 5/19/11 Ponti email):

Attached is an interim 1.2.4.k version that implements a proposed change in how DIGGS

handles tests. Will explain the reasons for the change and the specifics in more detail in

the call, but in brief:

The top level test features in prior versions have been replaced by a single Measurement

feature. This feature is patterned after the OGC Observation feature (but doesn't derive

from it). It is defined as "An act ("event"), whose results are estimates of the value of a

property or properties of interest at a position or series of positions on or within the earth."

The feature has two main properties: 1) outcome, and 2) procedure. The outcome

property contains a MeasurementResult object that derives from a GML coverage

feature. This feature contains both the position information for the measurement (eg.

where the measurement applies), that derives from the coverage domain, and a results

property (derives from the coverage range)that contains information about the

property(ies) derived from the measurement, and the value(s) of those properties. The

procedure property contains zero to one test object, that describes the metadata for the

test procedure and any interim results of value. The existing test features in prior versions

DIGGS V2.0.a Documentation

 Page 348

of DIGGS are being converted to these test objects - and contain the same parameter

properties as before, minus the properties that are the reported test results.

The Geotechnical.xsd schema in this current version only contains a few test procedures.

Loren is working on converting the others and making sure they are mappable to the

AGS 4.0 data dictionary. The file Geotecnical-old.xsd is the prior (1.2.4.j) version.

A new test instance document: testinstance-newMeasurements.xml, shows how the new

Measurement structure works for both the prior tests in that document, and a few others.

Advantages/Rationale for the change:

1) All "results" of test (eg. soil, chemical, hydrologic properties) occur at a single place in

the schema. In this encoding scheme, the "result" is what matters and can be easily

extracted from an instance document.

2) Measurement results can be reported without the need to instantiate a fake sample

or test feature for legacy data where only the result and position are known. While the

procedure property is a mandatory part of the Measurement feature, it need not be

populated by a measurement object.

3) All results are encoded in the same consistent fashion - results of in-situ tests, CPT,

geophysical logs, lab tests on samples, etc.

4) Provides a more flexible and practice-friendly means of associating results with test

procedures and sampling features.

5) Provides a basis for developing a parallel structure for time-varying observations (eg.

monitoring).

Disadvantages:

1) Currently uses a generic property object to describe the property being measured -

this means that the property type must come from a controlled list (dictionary) to

maintain interoperability.

2) Some schema control is lost (more dependence on schematron to ensure that an

instance document makes sense).

3) GML coverage encoding for all measurement results is not as human readable and

somewhat more complex to parse.

However, current DIGGS is already saddled with these problems w/respect to how CPT

and geophysical logs need to be encoded and will have similar issues with any kind of

test and monitoring results that are tabular in form, so we don't see these issues and

being a significant detriment to this plan.

In addition, 1.2.4.k makes some relatively minor changes to the layer system structure

and in particular the lithology layer and lithology objects to better accommodate US DOT

practice. We can discuss these as well, but they are of less consequence than the above.

DIGGS V2.0.a Documentation

 Page 349

 There was general concurrence from the group that the proposed approach should be

pursued further.

E.51 Teleconference Meeting Notes 2011-11-02

Date: November 2, 2011

Time: 10:00 AM – 12:00 PM (PST)

Participants: Loren Turner

Dan Ponti

Agenda: Discuss testing and monitoring data structures

Discussion:

Turner and Ponti reviewed the current state of DIGGS v1.2.4.k.j and the structure of the

“Measurement” object. This is the object used to capture all test information – the procedure

used and the results. At a high level, this object is structured as follows:

 Measurement

o Outcome

 Position (GML Domain Set)

 Results (GML Range Set)

o Procedure

The results and the position of the results are contained in the “Outcome” element (e.g. shear

strength). The test procedure used is contained in the “Procedure” element (e.g. triaxial test).

DIGGS V2.0.a Documentation

 Page 350

This structure is based on the GML 3.3 “coverage” model, where the Domain Set defines the

position and the Range Set contains the values. The structure is flexible such that simple result

sets or large sets of values (e.g. CPT) can be encoded. For example, multiple results at a single

depth interval:

 <!-- Laboratory Particle Size analysis results on same sample as above -->
 <Measurement gml:id="ps1">
 <projectRef xlink:href="#p1"/>
 <associatedLocationRef xlink:href="#LB_Webster"/>
 <sampleRef xlink:href="#s123"/>
 <samplingTime>
 <TimeInterval gml:id="ti13">
 <start>2004-11-12</start>
 </TimeInterval>
 </samplingTime>
 <resultTime>
 <TimeInterval gml:id="ti14">
 <start>2005-01-16</start>
 </TimeInterval>
 </resultTime>
 <outcome>
 <MeasurementResult gml:id="m102">
 <position>
 <DepthInterval gml:id="gm124">
 <gml:posList srsName="#sr123" srsDimension="1">5 6</gml:posList>
 </DepthInterval>
 </position>
 <results>
 <ResultSet>
 <parameters>
 <PropertyParameters gml:id="psp1">
 <properties>
 <Property index="1" gml:id="psp2">
 <mnemonic>Percent Fines</mnemonic>
 <typeData>double</typeData>
 <propertyName codeSpace="urn:x-diggs:def:code-list:DIGGS:property">percent_fines</propertyName>
 <uom>%</uom>
 </Property>
 <Property index="2" gml:id="psp3">
 <mnemonic>Coef. of Uniformity</mnemonic>
 <typeData>double</typeData>
 <propertyName codeSpace="urn:x-diggs:def:code-list:DIGGS:property">coef_uniformity</propertyName>
 </Property>
 <Property index="3" gml:id="psp4">

DIGGS V2.0.a Documentation

 Page 351

 <mnemonic>Median Grainsize</mnemonic>
 <typeData>double</typeData>
 <propertyName codeSpace="urn:x-diggs:def:code-list:DIGGS:property">d50</propertyName>
 <uom>mm</uom>
 </Property>
 </properties>
 </PropertyParameters>
 </parameters>
 <dataValues>18.5,1.39,2.5</dataValues>
 </ResultSet>
 </results>
 </MeasurementResult>
 </outcome>
 <procedure>
 <diggs_geo:ParticleSizeTest gml:id="pst">
 <specification>ASTM D422-63(2002)-</specification>
 <diggs_geo:gradingData>
 <diggs_geo:Grading gml:id="g1">
 <diggs_geo:particleSize uom="mm">4</diggs_geo:particleSize>
 <diggs_geo:percentPassing uom="%">84</diggs_geo:percentPassing>
 </diggs_geo:Grading>
 <diggs_geo:Grading gml:id="g2">
 <diggs_geo:particleSize uom="mm">2</diggs_geo:particleSize>
 <diggs_geo:percentPassing uom="%">56</diggs_geo:percentPassing>
 </diggs_geo:Grading>
 <diggs_geo:Grading gml:id="g3">
 <diggs_geo:particleSize uom="mm">0.5</diggs_geo:particleSize>
 <diggs_geo:percentPassing uom="%">10</diggs_geo:percentPassing>
 </diggs_geo:Grading>
 </diggs_geo:gradingData>
 </diggs_geo:ParticleSizeTest>
 </procedure>
 </Measurement>

Another example for a collection of results:

 <!-- CPT Sounding -->
 <Measurement gml:id="cpttest-1">
 <projectRef xlink:href="#p1"/>
 <associatedLocationRef xlink:href="#cpt-1"/>
 <outcome>
 <MeasurementResult gml:id="m103">
 <position>
 <MeasuredDepthArray srsName="#cptsr1" srsDimension="1" gml:id="MP001">
 <gml:posList>0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.110
 0.120 0.130 0.140 0.150 0.160 0.170 0.180 0.190 0.200 0.210 0.220 0.230 0.240
 0.250 0.260 0.270 0.280 0.290 0.300 0.310 0.320 0.330 0.340 0.350 0.360 0.370
 0.380 0.390 0.400 0.410 0.420 0.430 0.440 0.450 0.460 0.470 0.480 0.490 0.500
 0.510 0.520 0.530 0.540 0.550 0.560 0.570 0.580 0.590 0.600 0.610 0.620 0.630
 0.640 0.650 0.660 0.670 0.680 0.690 0.700 0.710 0.720 0.730 0.740 0.750 0.760
 0.770 0.780 0.790 0.800 0.810 0.820 0.830 0.840 0.850 0.860 0.870 0.880 0.890
 0.900 0.910 0.920 0.930 0.940 0.950 0.960 0.970 0.980 0.990 1.000 1.010 1.020
 1.030 1.040 1.050 1.060 1.070 1.080 1.090 1.100 1.110 1.120 1.130 1.140 1.150
 </gml:posList>
 </MeasuredDepthArray>
 </position>
 <results>
 <ResultSet>
 <parameters>
 <PropertyParameters gml:id="cptpr-1">
 <properties>
 <Property gml:id="Ddle267" index="1">
 <mnemonic>Qc</mnemonic>
 <typeData>double</typeData>
 <propertyName codeSpace="urn:x-diggs:def:code-list:property">tip_resistance</propertyName>
 <uom>kN/m2</uom>
 <nullValue reason="missing">9999</nullValue>
 </Property>
 <Property gml:id="Dd1e284" index="2">
 <mnemonic>Fs</mnemonic>
 <typeData>double</typeData>
 <propertyName codeSpace="urn:x-diggs:def:code-list:property">sleeve_friction</propertyName>
 <uom>kN/m2</uom>
 <nullValue reason="missing">9999</nullValue>
 </Property>
 <Property gml:id="Dd1e301" index="3">
 <mnemonic>Friction Ratio</mnemonic>
 <typeData>double</typeData>
 <propertyName codeSpace="urn:x-diggs:def:code-list:property">friction_ratio</propertyName>
 <nullValue reason="missing">9999</nullValue>
 </Property>
 <Property gml:id="Dd1e318" index="4">
 <mnemonic>u1</mnemonic>
 <typeData>double</typeData>
 <propertyName codeSpace="urn:x-diggs:def:code-list:property">pore_water_pressure</propertyName>

DIGGS V2.0.a Documentation

 Page 352

 <uom>kN/m2</uom>
 <nullValue reason="missing">9999</nullValue>
 </Property>
 </properties>
 </PropertyParameters>
 </parameters>
 <dataValues> cs="," ts=" " decimal="."> 0.1300,0.40,0.0000,0.0013
 0.2400,0.40,0.1000,0.0078 0.5500,0.40,0.0040,0.0126 0.6800,0.40,0.0070,-0.0017
 0.7800,0.30,0.0120,-0.0121 0.9000,0.30,0.0150,-0.0161 0.9600,0.40,0.0200,0.0191
 1.0400,0.40,0.0240,-0.0120 1.0700,0.30,0.0270,-0.0129 1.1000,0.30,0.1000,-0.0123
 1.1300,0.40,0.0350,-0.0176 1.1800,0.30,0.0400,-0.0234 1.2400,0.40,0.0430,-0.0206
 1.2600,0.40,0.0460,-0.0277 1.2600,0.40,0.0480,-0.0303 1.2800,0.40,0.0490,-0.0413
 1.2900,0.40,0.0500,-0.0482 1.2600,0.30,0.0500,-0.0455 1.2600,0.40,0.0500,-0.0514
 1.2633,0.40,0.0500,-0.0486 1.2667,0.40,0.0490,-0.0483 1.2700,0.40,0.0480,-0.0506
 1.2600,0.40,0.0470,-0.0539 1.2500,0.40,0.0460,-0.0560 1.2100,0.40,0.0430,-0.0604
 1.2000,0.40,0.0400,-0.0604 1.1900,0.40,0.0360,-0.0061 1.1900,0.40,0.0340,-0.0162
 1.1300,0.40,0.0320,-0.0359 1.0800,0.40,0.0300,-0.0353 0.9400,0.40,0.0290,-0.0095
 0.8700,0.40,0.0280,-0.0075 0.8300,0.40,0.0270,-0.0077 0.8100,0.40,0.0270,-0.0080
 0.8300,0.40,0.0270,-0.0075 0.7600,0.40,0.0250,-0.0059 0.6900,0.40,0.0240,-0.0049
 0.7000,0.40,0.0230,-0.0044 0.6500,0.40,0.0220,-0.0040 0.6200,0.40,0.1000,-0.0040
 0.6000,0.40,0.1000,-0.0043 0.6000,0.40,0.1000,-0.0038 0.5900,0.40,0.1000,-0.0035
 0.5800,0.40,0.1000,-0.0032 0.5500,0.40,0.0200,-0.0084 0.5500,0.40,0.0180,-0.0154
 0.5400,0.40,0.0190,-0.0187 0.5300,0.40,0.0180,-0.0220 0.5200,0.40,0.0180,-0.0296
 0.5300,0.40,0.0180,-0.0073 0.5400,0.40,0.0170,-0.0039 0.5500,0.40,0.0160,-0.0074
 0.5500,0.40,0.0150,-0.0129 0.5500,0.40,0.0150,-0.0169 0.5700,0.40,0.0150,-0.0174
 0.5800,0.40,0.0160,-0.0141 0.6000,0.40,0.0170,-0.1000 0.6300,0.40,0.0190,-0.0027
 0.6700,0.40,0.0200,-0.0031 0.6800,0.40,0.1000,-0.0028 0.6900,0.40,0.0220,-0.0040
 0.7100,0.40,0.0230,-0.0070 0.6900,0.40,0.0230,-0.0095 0.6900,0.40,0.0240,-0.0077
 0.6867,0.40,0.0240,-0.0074 0.6833,0.40,0.0250,-0.0137 0.6800,0.40,0.0250,-0.0120
 0.6900,0.40,0.0250,-0.0123 0.7000,0.40,0.0240,-0.0116 0.6900,0.40,0.0240,-0.0107
 0.7300,0.40,0.0220,-0.0117 0.7300,0.40,0.1000,-0.0167 0.7300,0.40,0.1000,-0.0203
 0.7400,0.40,0.0200,-0.0228 0.7200,0.40,0.0200,-0.0222 0.7100,0.40,0.0190,-0.0222
 0.7100,0.40,0.0190,-0.0200 0.7000,0.40,0.0180,-0.0213 0.6900,0.40,0.0170,-0.0202</dataValues>
 </ResultSet>
 </results>
 </MeasurementResult>
 </outcome>
 <procedure>
 <diggs_geo:StaticConePenetrationTest gml:id="d1e242">
 <equipmentRef xlink:href="cone-1"/>
 <diggs_geo:distanceTipToSleeve uom="cm">15</diggs_geo:distanceTipToSleeve>
 <diggs_geo:penetrometerType>piezocone</diggs_geo:penetrometerType>
 <diggs_geo:tipArea uom="cm2">15</diggs_geo:tipArea>
 </diggs_geo:StaticConePenetrationTest>
 </procedure>
 </Measurement>

Capturing monitoring data in this structure creates issues. In GML the Domain Set is a spatial

reference only. However, the nature of monitoring data is that it’s primarily in a time based

domain.

Recommendation at this time – Create a new element in the Measurement object that defines a

time-based domain. This new element would reside in the Outcome element, as follows:

o Measurement

 Outcome

 Position (GML Domain Set)

 Time (new DIGGS Time Domain Set)

 Results (GML Range Set)

 Procedure

This extension of the GML coverage structure would allow capture of time-based monitoring data

within the same data structure. This effectively adds a 3
rd

 dimension to the results array.

Examples (in very simplified format) are provided to illustrate concepts.

Notes:

DIGGS V2.0.a Documentation

 Page 353

 Position domain would be mandatory. We'll always be able to define position value at a

location feature.

 Time domain can be optional.

 Use schematron that checks that the time domain has either 1 set of values (used for

each position domain), or one per each depth, but nothing in between.

 The iteration through the result set (mapping the results to the appropriate position and

time), by convention, iterates through all of the time values before incrementing to the

next position value.

Example 1 – Borehole with measurements at 3 depths, each with 3 results, and results reported

multiple times at different time intervals.

Position (GML Domain Set):

2, 3, 4

Time (new DIGGS Time Domain Set):

0, 1, 2

0.0, 1.1, 2.2, 3.3, 4.4

0.4, 1.4, 2.4

Results (GML Range Set):

100, 200, 30 <---- this corresponds to depth=2, time=0

101, 201, 30 <---- this corresponds to depth=2, time=1

102, 202, 30 <---- this corresponds to depth=2, time=2

100, 200, 30 <---- this corresponds to depth=3, time=0.0

101, 201, 30 <---- this corresponds to depth=3, time=1.1

102, 202, 30 <---- this corresponds to depth=3, time=2.2

102, 202, 30 <---- this corresponds to depth=3, time=3.3

102, 202, 30 <---- this corresponds to depth=3, time=4.4

100, 200, 30 <---- this corresponds to depth=4, time=0.4

101, 201, 30 <---- this corresponds to depth=4, time=1.4

102, 202, 30 <---- this corresponds to depth=4, time=2.4

Example 2 – Borehole with measurements at 3 depths, each with 2 measurements, and

measured 3 times at consistent time intervals.

Position (GML Domain Set):

2, 3, 4

Time (new DIGGS Time Domain Set):

0, 1, 2

Results (GML Range Set):

100, 200 <---- this corresponds to depth=2, time=0

101, 201 <---- this corresponds to depth=2, time=1

102, 202 <---- this corresponds to depth=2, time=2

100, 200 <---- this corresponds to depth=3, time=0

101, 201 <---- this corresponds to depth=3, time=1

102, 202 <---- this corresponds to depth=3, time=2

DIGGS V2.0.a Documentation

 Page 354

100, 200 <---- this corresponds to depth=4, time=0

101, 201 <---- this corresponds to depth=4, time=1

102, 202 <---- this corresponds to depth=4, time=2

Example 3 – Borehole with measurements at 3 depths, each with 2 results, and results only

reported once (no multiple time-based results).

Position (GML Domain Set):

2, 3, 4

Time (new DIGGS Time Domain Set):

0

Results (GML Range Set):

100, 200 <---- this corresponds to depth=2, time=0

100, 200 <---- this corresponds to depth=3, time=0

100, 200 <---- this corresponds to depth=4, time=0

Example 4 – Borehole with measurements at 1 depth, 2 results, and results reported 3 times at

consistent intervals.

Position (GML Domain Set):

2

Time (new DIGGS Time Domain Set):

0, 1, 2

Results (GML Range Set):

100, 200 <---- this corresponds to depth=2, time=0

101, 201 <---- this corresponds to depth=2, time=1

102, 202 <---- this corresponds to depth=2, time=2

E.52 Teleconference Meeting Notes 2012-01-24

Date: January 24, 2012

Time: 9:00 AM – 10:00 AM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Agenda: Project Team Status and Planning

Discussion:

 Project planning issues:

o Need to come up with punchlist to wrap up 1.2.

o Release 1.2 by late February 2012.

DIGGS V2.0.a Documentation

 Page 355

o Galdos begin prep on documentation.

 Technical issues – Burggraf had emailed comments in December in response to meeting

notes from Turner/Ponti about time-domain monitoring structure. Four suggestions

offered by Burggraf:

(1) Change DepthInterval to be a GML geometry, e.g. MultiPoint, that way all GML-

aware software will recognize it as such and be able to process it accordingly. If it is a

custom geometry, then some GML-aware software will recognize it (e.g. Galdos), but

not too many.

 <MeasurementResult gml:id="m102">

 <position>

 <DepthInterval gml:id="gm124">

 <gml:posList srsName="#sr123" srsDimension="1">5

6</gml:posList>

 </DepthInterval>

 </position>

 <results>

 ...

Perhaps the finer-grained semantics can be put into the property name instead of the

Object name? Here's an example:

 <MeasurementResult gml:id="m102">

 <depthInterval>

 <g3.3:MultiPoint gml:id="gm124">

 <gml:posList srsName="#sr123" srsDimension="1">5

6</gml:posList>

 </ g3.3:MultiPoint>

 </depthInterval>

 <results>

 ...

(2) Same comment as above for the other custom geometries (e.g.

MeasuredDepthArray, ...)

(3) <typeData> looks like it should be code-list valued (e.g. the standard XSD data types

could be allowed values in the code-list)

 <PropertyParameters gml:id="psp1">

 <properties>

 <Property index="1" gml:id="psp2">

 <mnemonic>Percent Fines</mnemonic>

 <typeData>double</typeData>

 <propertyName codeSpace="urn:x-diggs:def:code-

 list:DIGGS:property">percent_fines</propertyName>

DIGGS V2.0.a Documentation

 Page 356

 <uom>%</uom>

 </Property>

(4) For the encoding of position + time domains, I would recommend a separate

<posList> for the separate time intervals. I.e. for the following example:

Position (GML Domain Set):

2, 3, 4

Time (new DIGGS Time Domain Set):

0, 1, 2

0.0, 1.1, 2.2, 3.3, 4.4

0.4, 1.4, 2.4

Encode it something like this:

<position>

 <g3.3:SimpleMultiPoint srsDimension="1">

 <gml:posList>2 3 4</gml:posList>

 </g3.3:SimpleMultiPoint>

</position>

<time>

 <TimeDomain>

 <timePositionList>2 3 4</timePositionList>

 <timePositionList>0.0 1.1 2.2 3.3 4.4</timePositionList>

 <timePositionList>0.4 1.4 2.4</timePositionList>

 </TimeDomain>

</time>

 Priorities for technical schema work for next couple of weeks:

o First priority is to come to consensus on the time-domain structure suggested in

Burggraf’s item (4).

 ACTION: Turner/Ponti/Burggraf will have conference call next Tuesday to

decide on structure and move ahead.

o Second priority is to reconsider the position element (DepthInterval) and how

it’s currently encoded in DIGGS as suggested in Burggraf’s items (1) & (2).

 ACTION: Need to decide if the change suggested by Burggraf can/should

be implemented at this time. Discuss on call next Tuesday.

o Third priority -- consider Burggraf’s item (3).

 ACTION: Turner/Ponti meet next week to review status of codelists.

E.53 Teleconference Meeting Notes 2012-02-03

Date: February 3, 2012

Time: 1:00 PM – 4:00 PM (PST)

DIGGS V2.0.a Documentation

 Page 357

Participants: Loren Turner

Dan Ponti

David Burggraf

Agenda: Project Team Status and Planning

Discussion:

 Documentation to be prepared by Burggraf.

o Turner will send Burggraf prior documentation from 1.0a phase work for

reference.

o Need primer on how to deal with various features and relationships.

o Ponti will ask Bray if interested to contribute.

 Change this version to “2.0a” (version 2 alpha) due to major changes.

 Remaining work:

o GML 3.3 Changes.

 Not sure if latest version has all the draft GML 3.3 changes.

 Burggraf will send all draft GML 3.3 files again.

 Ponti will check if it validates with the new DIGGS 2.0a to confirm.

 We know that some new changes are needed to make DIGGS fully GML

3.3 compliant. However, 3.3 is still under public review and could result

in other changes that impact DIGGS. For now, we won’t try to make

further changes to anticipate what the final GML 3.3 will contain, and we

will proceed with our current understanding of GML 3.3.

o Update 20 Examples.

o Update Schema Documentation.

o Monitoring Structure. We had suggested back in November that a hybrid

position/time domain structure be created. However, this requires making

changes to GML coverage structures that we hadn’t considered at that time.

Path forward – retain the current GML coverage for position based coverages, as

we described in the “Example 3” from earlier notes (with the time part removed).

Example 3 – Borehole with measurements at 3 depths, each with 2

results, and results only reported once (no multiple time-based results).

Position (GML Domain Set):

2, 3, 4

Time (new DIGGS Time Domain Set):

0

Results (GML Range Set):

100, 200 <---- this corresponds to depth=2, time=0

100, 200 <---- this corresponds to depth=3, time=0

100, 200 <---- this corresponds to depth=4, time=0

DIGGS V2.0.a Documentation

 Page 358

For monitoring data, we’ll create a new time-domain based structure, as we

described in “Example 4” (with the position part removed).

Example 4 – Borehole with measurements at 1 depth, 2 results, and

results reported 3 times at consistent intervals.

Position (GML Domain Set):

2

Time (new DIGGS Time Domain Set):

0, 1, 2

Results (GML Range Set):

100, 200 <---- this corresponds to depth=2, time=0

101, 201 <---- this corresponds to depth=2, time=1

102, 202 <---- this corresponds to depth=2, time=2

Burggraf will create a new time-based structure in the DIGGS domain and send

out for review.

o Still need to address this issue from prior meeting: Change DepthInterval to be a

GML geometry, e.g. MultiPoint, that way all GML-aware software will recognize it

as such and be able to process it accordingly. If it is a custom geometry, then

some GML-aware software will recognize it (e.g. Galdos), but not too many.

 <MeasurementResult gml:id="m102">

 <position>

 <DepthInterval gml:id="gm124">

 <gml:posList srsName="#sr123" srsDimension="1">5

6</gml:posList>

 </DepthInterval>

 </position>

 <results>

 ...

Perhaps the finer-grained semantics can be put into the property name instead of

the Object name? Here's an example:

 <MeasurementResult gml:id="m102">

 <depthInterval>

 <g3.3:MultiPoint gml:id="gm124">

 <gml:posList srsName="#sr123" srsDimension="1">5

6</gml:posList>

 </ g3.3:MultiPoint>

 </depthInterval>

 <results>

 ...

DIGGS V2.0.a Documentation

 Page 359

o Bring all WITSML measure types, DIGGS measure types and bring all into

DIGGS namespace. This eliminates WITSML from DIGGS.

 Burggraf will carry out this work.

 Follow GML-like naming conventions.

 Identify orphans.

o Wireline result parameters not included in Turner’s prior spreadsheet. Ponti to

send instructions to Burggraf on what we need. Turner will set up meeting with

Ponti for more in-depth discussion.

o May be able to eliminate Monitoring and Environmental schemas. Need to

discuss with Environmental SIGs. Ponti/Turner to identify who needs to be in

discussion.

E.54 Teleconference Meeting Notes 2012-02-10

Date: February 10, 2012

Time: 1:00 PM – 3:00 PM (PST)

Participants: Loren Turner

Dan Ponti

David Burggraf

Agenda: Project Team Status and Planning

Discussion:

 Status of draft Final Report.

 Changes Ponti made between 1.2.4j to 1.2.4k (2.0a). From Dan’s 2/10/12 email:

1) Changed name of Location and all of it's siblings to SamplingFeature. This normalizes it more with O&M

and lets us use the term location to mean what it normally means in the English language. This mostly only
affects abstract elements and base types - there some but not a lot of impacts to the instances.

2) Removed monitoringInstallations as a top level property; replaced with the Monitoring structure, which
derives from AbstractMeasurement

3) Added investigationTargets as a top-level property and built AbstractInvestigationTarget base type for
these targets (equivalent to OM feature-of-interest). The base type right now is the same as
diggs:AbstractFeature. This will be the category of features that are the "targets" for DIGGS data - eg.
ground investigations, embankments, piles, roadways, etc.

4) Created an element and associated base types for Ground, which extends AbstractInvestigationTarget
(but adds no additional properties). It is currently the only concrete investigation target in this version of
DIGGS.

5) Added mandatory investigationTargetRef be identified for every sampling feature, measurement (eg. test
and monitoring), and sampling activity - DIGGS features where the locationRef is not mandatory.

DIGGS V2.0.a Documentation

 Page 360

6) Added Well as a new concrete SamplingFeature.

7) Created two additional sampling features: Transect and Face, to represent a generic linear and planar
sampling feature (such as a linear transect or outcrop). These use the abstract type without extensions.

8) Removed AbstractLocation and type - not needed - diggs:AbstractGeometry contains all needed elements;

9) Deleted LayerIntervalType - not needed any longer.

10) Removed ValueAtTime, ValueAtDepthbyTime and ValueAtType elements and properties - not needed.

11) Eliminated most comments except for CDATA and DSB profile restrictions.

12) Changed a number of gml: geometries to their diggs-derived equivalents. Did not do this for
referenceEdge, featureExtent, and relativeFeatureBoundary of AbstractPlanarSamplingFeature. Probably
should, but want to consult with David first.

13) Reduced the number of diggs geometry features to eliminate redundancy (eg. DepthInterval and
CurveLocation merged into a single LinearExtent feature)

14) Abstracted Measurement and defined a base type (AbstractMeasurement) that holds all of the required
and optional references that a measurement might have. Renamed Measurement to Test to be used for
measurements that occur at a single time instant or within an interval of time but where time is not an
integral part of the result (eg. the position indexed results). Created a Monitoring feature that would be
used for measurements taken at a non-varying position or location, but where the results are time-indexed.
This covers the end members for measurements.

15) For Monitoring, although it parallels the Test structure, there is no real procedure. I replaced the procedure
property with a process property that contains the diggs metadata property group to allow recording of
specifications and equipment. However, there is some redundancy here; as the Property object of a
measurement also contains a property called detectorRef that can reference equipment used to record the
specific property. So, should we limit procedure to only reference or describe a specification?

16) Created ChemicalAnalysis in the environmental namespace as a test procedure that can store info for
chemical tests (such as sample volume, type, etc.). and also modified SpectralAnalysis to extend
ChemicalAnalysis. We need to discuss this with the environmental SIG and see if there shouldn't be some
other concrete procedures for these chemical tests.

17) Removed WaterLevelReading and associated types in Environmental and converted the properties here to
result properties, or added to the Property object to be used within the Monitoring structure. There are a
couple of properties that either seemed redundant or I didn't understand that I did not transfer. We need to
talk with folks in Environmental to decide what to do with these:

18) captureQualifier - no clue what this means,

19) type property for the reading - unclear what this is supposed to represent - if it is method specific this is
handled in the procedure.

20) c)

21) There are some tradeoffs here where some types of recorded info for fluid levels may result in repetition of
values in the data block (eg. like fluid_type) and by measurement-specific reporting constraints. This can
be avoided somewhat by expanding the result property definitions we support, but this is likely to get
unwieldy. We can discuss this a bit so I can fully explain.

22) There's still some things in Environmental I don't yet know what to do with - eg Filtration, Purge, TICResult.
Fitration sits on its own, and probably should be melded into the samplePreparation structure somehow.
Purge is a procedure that might work within a monitoring measurement. How is Purge different from the
Pumping test in the Geotechnical schema? TICResult (I think this is total organic carbon), should go into
the set of property classes for measurement results, but maybe there should be another test procedure for
this? Again, I think we need to consult with the Environmental SIG.

23) Commented out a lot of code in Monitoring and Environmental that is no longer needed. I left water level
measurements in Environmental for now, but this would probably again morph into a monitoring
measurement with the procedure or detector being a water level test or something like that.

24) Fixed a few odds and ends to make sure everything validated.

25) Changed the testInstance to validate against the new changes.

26) Eliminated the Monitoring schema - with the monitoring feature in kernel, it is no longer needed.

DIGGS V2.0.a Documentation

 Page 361

 GML 3.3 changes – Ponti will send the new 2.0a to Burggraf to check.

 Monitoring structure.

o Ponti created a draft structure that separates the primarily position-based

measurements from primarily time-based measurements.

 Test – measurement using a GML position coverage.

 Uses the GML coverage model as set up before.

 Monitoring – measurement using a time coverage.

 Encoding/declaring the times is not clear.

o Actions:

 Burggraf will review, modify the new structure, and test for GML

compliance.

 Path forward with WITSML units schemas.

o Hold off until later time.

o Lower priority relative to other remaining issues.

 Regroup elements in the Kernel.

o Group like elements together.

 Abstract and base types

 Support types

o Alphabetize within sections

o Use comments in the schema text file.

o Burggraf will do this.

 Check dependencies and eliminate orphaned elements and types.

o Are there any types not being used?

o Burggraf will run GML SDK and another script tool to identify orphan elements.

Will send to Ponti for review.

 Consistency in DIGGS types – if defined in DIGGS namespace, is it used consistently

everywhere?

o Ponti will check into how DIGGS string type is used throughout as well as other

types.

 Updating the 20 examples – need to do this manually. Likely will require Ponti/Turner to

do this.

 WITSML wireline parameters into dictionary.

 Elimination of monitoring and environmental schemas

 DepthInterval issue.

