VOL.105 NO.GT10. OCT. 1979

JOURNAL
OF THE
GEOTEGHNIGAL

ENGINEERING
DIVISION

PROCEEDINGS OF
THE AMERICAN SOCIETY
OF CIVIL ENGINEERS

AMERICAN
SOCIETY OF
CiviL
ENGINEERS
FOUNDED
1852,




VOL.105 NO.GT10. OCT. 1979

JOURNAL
OF THE
EOTEGHNIGAL

ENGINEERING
DIVISION

PROCEEDINGS OF
THE AMERICAN SOCIETY
OF CIVIL ENGINEERS

GORE ENGINEERING, INC. aroncers

D MR A7
|

Copyright© 1979 by
American Society
of Civil Engineers

All Rights Reserved

|

i i 0CT 17 1979
I gy S
| STy




CONTENTS

AMERICAN SOCIETY
OF CIVIL ENGINEERS

:OA:D (:F DIRECTION gEOTE.CHPéICAL .E"NGINEERlNG DIVISION Railroad Ballast Load Ranking Classification

resiaen -xecutive CLommittee . N )

Walter E. Blessey William F. Swiger, Chairman by Gerald P. Raymond and Vishnu A. Diyaljee . . . . . . . . ... ... 1133

Past President jonn t\ Focht, Jr., Vice Cha"‘rngan o |

LS : ohn Lysmer obert L. Schuster ATz

s Emest . Sellg Soerster enegoment Group £ R L e
Joseph S. Ward O s Mombor \z g P y Michael Garber and Rafael Baker . . . . . . . ... ... ...... 1155

Vice Presidents Publications Committee AP .

Virgil Meedel Cranston R. Rogers William F. Marcuson Ill, Chairman Probabilistic Evaluation of Penetration Resistances
Irvan F. Mendenhall John H. Wiedeman 0. B. Andersland L. J. Langfelder by Wil H T

Direibrs Warron J. Baker Roberto Lastrico y Wilson H. Tang . . . . . . .. T T SO e s 1173
ovid s qusin | James Soge - SO0 G, Folbe 5 an
Flg%gz. éis:g;es ames éicr:l;‘gv{ﬂéar:{ Joseph E. Bowles Gholamreza Mesri Interparticle Action and Rheology of Dispersive Clays
John A. Bonell Eugene R. McMaster Chandra S. Brahama Donald J. Murphy by Raymond N. Yong, Amar J. Sethi, Harald P. Ludwig,

Edward A. Bryant ranklin D. Meyers Ralph Brown S. V. Nathan d Mary A. J 2
William J. Carroll David A. Novick J. T. Christian Thom L. Neff an ary A. Jorgensen. .. .. .. ol e v e el e s s wa e . 1193
Eranclig j Sonnell Sw F:;;sselll_‘S%_earlns g gv'Dcelso:igh Michasldvvogﬁt:i‘ﬂ
onald J. Drnevich illiam H. Taylor . 9. 5 . O . N
D. Allan Firmagec_ St_afft;rd (E; Lhorr};on Lt;rr\g::t l?_.‘ EEdi|r|\stein P HTg‘r’eS:;': Dynamics of Vibratory-Roller Compaction
Lliipabar ol Sl thi‘g:iggd - Vaughan D H. Gray Adrian F. Richards by Tai-Sung Yoo and Ernest T. Selig . . . . . ... ... .. ...... 1211
Bobby O. Hardin Adel Saada
EXECUTIVE OFFICERS Cornelius J. Higgins Robert L. Schiffman Static Sh d Liquefacti .
Eugenf %ﬂwoyerWEx%cutive Dé:rector,/A PObteﬁ Dl.d}'!ohz Walte&‘ C. shh?IrTaSn',l Jr. 2 lCY eal;lan iquefaction Potential
ouis L. Meier, Washington Counsel/ Assistant zzat M. Ildriss arshall L. Silver : ogi| A 1 7 i
e g I lon S. Tarbox y Yoginder P. Vaid and W. D. Liam Finn . . . . . .. ... ...... 1233
William N. Carey, Secretary Emeritus Reuben H. Karol . _G. R. Thiers
William H. Wisely, Executive Director Emeritus H. Y. Ko David E. Thompson
glllichaeal r‘|l S?(Igz, Treasur_’gr \{-Vullllag\n?. 'l<(0\f/tacs Dom'a(ld '!'rveva ¥vel!
mer B. Isaak, Assistant Treasurer eland M. Kra uei-Wu Tsai
Raymond J. Krizek Charles R. Ullrich TECHNICAL NOTES
o e i st CC tagd G N Viayvergiya
onald A. Buzzell, Managing Director for .C. . N. Vijayvergiya 1
Education and Profass}gonal Affairs Poul V. Lade Lawrence Von Thun Proc. Paper. 14872
Robert A. Crist, Jr., Managing Director for R. N. Yong
. P#bl‘;citi?ln; and é’echmlc;a Affairs E. T. Selig, Exec. Comm. Contact Member
ichard A. Jeffers, Controller
Carl E. Nelson, Director, Field Services PUBLICATION SERVICES DEPARTMENT | Estimated M itude of A A oy . .
Don 5, ;*%poff;é Director, Policy, Planning Technical Publications | s blm; eh }:gm ude of Acoustic Emissions in Soil
and Public irs ) X rthur E. X
ey Public Richard R. Torrens, Editor . ‘ y 17} Lord, Jr. and Robert M. Koerner . . . . . . .. ... ... 1249
Communications James T. Halston, Assistant Editor
Albert W. Turchick, Director, Technical Timothy O. Bakke, Editorial Assistant
Services Mary Ann Canino, Editorial Assistant -
George K. Wadlin, Director, Education Joseph P. Cerami, Editorial Assistant
Services and Continuing Education Antoinette Cimino, Editorial Assistant
R.lbawrence Whipple, Director, Engineering gﬁ;‘:aﬂng::’;"bfgx’gg :E;’;:m
lanagement Services T RS - - -

COMMITTEE ON PUBLICATIONS Richard C. Scheblein, Draftsman This Journal is published monthly by the American Society of Civil Engineers. Publications
James W. Gillespie, Chairman Information Services office is at 345 East 47th Street, New York, N.Y. 10017. Address all ASCE correspondence
Ronald J. Drnevich Richard W. Karn Irving Amron, Editor to the l_:‘.ditorial and General Offices at 345 East 47th Street, New York, N.Y. 10017.
James N. (Slssntravff e Thorm[c))?\vm A. Novick Allow six weeks for change of address to become effective. Subscription price to members

Or o

is $12.00. Nonmember subscriptions available; prices obtainable on request. Second-class
postage paid at New York, N.Y. and at additional mailing offices. GT, HY.

Tl§e S_ociety is not responsible for any statement made or opinion expressed in its
publications.




== ]

14901 OCTOBER 1979 GT10

JOURNAL OF THE
GEOTECHNICAL
ENGINEERING DIVISION

EXTREME-VALUE PROBLEMS
OF LiMITING EQUILIBRIUM

By Michael Garber' and Rafael Baker>

INTRODUCTION

Many of the problems encountered in Soil Mechanics are of the extreme-value
type. Such problems are, e.g., the stability of slopes, the bearing capacity of
foundations, the limiting forces (active and passive) acting on retaining structures,
etc. These problems and a number of similar ones are shown in Fig. 1. In
each of these problems it is required to find the extreme (minimal or maximal)
value X, of some parameter X, while all other parameters defining the problem
are assumed to be known. According to the character of the problem, X may
be one of the parameters F, P, X, ¥,» B, or M, in which F = the factor
of safety with respect to strength; P = an external load; X,, Y, = the coordinates
of the point of P application; B = the direction of P; and M = an external
moment.

All the problems described in Fig. 1 may be solved within the framework
of the limiting equilibrium (LE) approach. This approach, which considers a
“test-body”” bounded by soil surface j(x) and slip surface y(x) (see Fig. 2)
is based on the following three concepts: (1) Satisfaction of failure criteria
7 = f(o) along the slip surface, in which 7(x) and o(x) are distributions of
the shear and normal stresses along y (x), respectively; (2) satisfaction of all
equilibrium equations for the ‘‘test-body’’; (3) extremization of factor X with
respect to two unknown functions y (x) and o (x) so that, in fact, X is considered
as a functional of these functions. The extreme value, X o> 1S defined as

Note.—Discussion open until March 1, 1980. To extend the closing date one month,
a written request must be filed with the Editor of Technical Publications, ASCE. This
paper is part of the copyrighted Journal of the Geotechnical Engineering Division,
Proceedings of the American Society of Civil Engineers, Vol. 105, No. GT10, October,
1979. Manuscript was submitted for review for possible publication on March 20, 1978.

'Lect., Soil Sci. Dept., Faculty of Agr. Engrg., Technion-Israel Inst. of Technology,
Haifa, Israel.

%Sr. Research Fellow, Soil Mechanics Dept., Faculty of Civ. Engrg., Technion-Israel
Inst. of Technology, Haifa, Israel.
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X, = Extr X[y (x),0(x)]

y(x)

o(x)

The existing methods differ from one another in the assumptions about the
character of previously mentioned functions y (x) and o(x). The straight line,
circular arc, and log-spiral are the most widely used assumptions with respect
to the character of y (x). The form of o'(x) is either assumed directly or introduced
indirectly by assumptions regarding the nature of the interaction between sections
of the sliding mass. However, if the aforementioned assumptions regarding y x)
may be justified by some experimental observations, then the popular assumptions
regarding o(x) are considerably more arbitrary. Thus, we must recognize that
the majority of existing methods are poorly argued. As a result, we cannot

Foundation

Retaining structure - Retaining structure -

passive pressure

active pressure

FIG. 1.—Different Extreme Value Problems: X = F—Slope Stability; X = P—Limiting
Load; X = x,—Limiting Location; X = B—Limiting Direction; X = M—Limiting
Moment

apply them with sufficient confidence. Finally, we cannot conclude in any specific
case which one of these methods is the most justified.

It appears that the proper way to get out of this situation is to base the
analysis on the concepts of LE only. Several attempts to treat the stability
problem in such a way have been made (2,5,6). All these attempts deal with
the case of homogeneous and isotropic soil. The first attempt to analyze the
stability problems (slope and foundation) in terms of two unspecified functions
y(x) and o(x) was made by Kopacsy (6) in 1955. However, a reappraisal of
Kopacsy’s analysis by Baker and Garber (1) shows that it contains a number
of serious errors and misconceptions.

The analysis of the slope stability problem in terms of two unspecified functions
y(x) and o (x), using the usually accepted factor of safety with respect to strength,

——
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was perfonped first by Baker and Garber (2). The analysis and the solution
of the bearing-capacity problem, in which y(x) and o(x) are unspecified and
the factor to be minimized is the foundation load, were presented first by Garber
anfi Baker (5). Both works deal with the case of homogeneous and isotropic
soil. The analysis performed in the present work unifies all the extreme-vaﬁle
problems and takes into account all the possible distributions of soil properties
exte_rnzy.l loads, a‘nd pore-water pressure. The analysis is performed without an}1
a priori assumpt_lons regarding y (x) and o (x); all the LE equations are satisfied
and no assumptions are used in the investigation process. The most important
result of the present work is the basic theorem of LE, which states that in

P, (x)

R (x)

y(x) a(x)

FIG. 2.—Unified Extreme-Value Problem

the rigorous LE treatment the extreme v is i
rous alue X, of X is indepe
stress distribution o (x). PEReM gt pormay

MATHEMATICAL PRESENTATION

A mass of soil (Fig. 2) is considered to be in the state of LE if:

1. Coulomb’s relation is satisfied along potential slip line y (x)
c+ (o —u)y
T=—
Pt cewt 1ok m Bt e c® Gty vy st be ARSI ] (¢))]

2. The equations Of horizontal cl’tical aIld mo:. ilibri
’ s i
) \4 ment eqlllhbl‘l\lm are Satlsﬁed

*n

D,dx — PsinB =0

*o

S (kT cos a — o sin ) dl + S
1
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S (ktsin o + o cos a) dl — S [p, + ¥(¥y —»)] dx — Pcos B=0 ... @b
1 Xo
S [kt cosa — o sina)y — (kT sina +0 cosa) x] dl
1
+ S [Py + P, x+3(F —y)x] dx + P(x, cosf -y, sinB)+M=0 ()

in which c(x,y,y’) and $(x,y,y’) = the cohesion and the internal friction angle
of the soil, respectively; ¢ = tan ¢; o = arc tan (dy/dx); 1 = the arc length
along y (x); x,, x, = the end points of y(x); Y(x,y) = the average unit weight
of soil section (j — y) dx; u(x,y) = the pore-water pressure; and p,(x), p,(x)
— the distributions of external loads applied at the soil surface.

The constant k = =1 is introduced in order to characterize the direction
of sliding and thus the direction of 7; k = 1 corresponds to the sliding in
the negative c direction, k = —1 to the sliding in the positive x direction (see
Figs. 1 and 2).

Combining Egs. 1 and 2 and using the geometrical relations dl = dx/cos
a, tan o = dy/dx, one arrives at
S H[y(x),a(x), X, D] dx = X {o(kt — Fy') + k(c —ub)

X0

+F[p,—8(x—x,)PsinBl}dx=0........ ... (3a)

x

8 : VIy@), o), X, D] dx = S n {o(kyy’ + F) + k(c — ub)y’

X! Xo

-F[py+ﬁ()7—y)+8(x—xp)PcosB]}dx=0

S "Miy(), 0 (), X, D] dx = g @y — ')y — (kY + F)x]

X *o

+k(c—ub)y —xp')+ F{p,x +3(F —y) x + P} +3 (x —x,)[P(x, cos B
—y,sinB)+MIDdx=0 . .. 3c¢)

in which 8 = Dirac’s delta function.

In Egs. 3, X[y(x), o(x)] is a parameter to be extremized. The value D
represents the data of the problem; it includes the known parameters, which
characterize the problem, and the given functions c(x,y, ¥y b (x,p,y"), Mx, ),
u(x,y), 5(x), p .(x), and p, (x), which characterize the soil profile. The generalized
extreme-value problem of LE can now be stated as follows: find a pair of
functions y (x), o(x) that realize the extremum X, of X subject to the satisfaction
of the three LE equations, Eqgs. 3.

VARIATIONAL ANALYSIS

The problem formulated previously is a nonstandard variational problem, since
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X may appear in more than one of Egs. 3. This difficulty has been recently
overcome by Baker and Garber (2). Using a number of theorems of variational
calculus it was shown that the functions y(x), o(x), realizing the extremum
of X in the system of Egs. 3, are the same as those realizing the extremum
of the functional Z[y(x), o(x)]. (In Ref. 2 the case of uniform soil profile
was considered. However, the possibility of such a reduction of the problem
is independent of the character of the soil profile.)

Z= X My, o), Xoy DL dx . o i 5. s0i 55 % b b0 4 g5s m ¥ s (4a)
subject to the constraints g Hly(x),o(x),X,,,D]dx=0 ...... (4b)
S PIy(x), 0(x), Xos D1 dx =055 1 50 Sat ihvnin i v oo w s o (4c)
and with the additional condition ExtrZ=0 ... ............ 4d)
y()
o(x)

The system of Egs. 4 depends on the extreme value X, of X only, while
the original system of Eqs. 3 depends on the functional X itself.

Eqgs. 4 represent a standard isoperimetric problem of variational calculus.
This problem is, in turn, equivalent to the problem of extremizing the auxiliary
functional G [y (x), o(x)]

G= X gdx = X M+ H+\,V)dx

Xo *o

= X .{G(X)L[y(x), X, oM, Ay, D] + S[y(x), XoioN 15N 5, D]} dx (5a)

subject to the constraints (Eqs. 4b and 4c) and with the additional condition
D04 3 e | R b A R T T e o (5b)
y(x)

o (x)

It can be seen that this condition (Eq. 5b) is equivalent to the previous one

(Eq. ﬁd). The parameters A, and \, appearing in Eq. 5a are Lagrange’s
undetermined multipliers. The functions L and S are defined as

L= [k$(h; —x) = FO\, + )] 7. +Rb A+ )+ FQgmx) e sl (6)
S=k(ic—uP)[y’ QA=)+, + ] - F(p, +3( —NIA>—x)
—p (AN +Y)+8(x—x,)(P[A,—x,)cos B +(\,+y,)sinB] — M}) (6b)

The system of Eqs. 5a, 4b, 4c, 5b is the final reduction of the problem. The
system of the necessary conditions for an extremum (system of Euler’s equations)
is
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ag d [ og
-6_0 — :1; (&T) S e 5% SR 6 ol B8 ooy By o Sy B HO R b oret (7a)
ag d [ ag
‘5‘; P ; (‘J) = O e o N T o el SR SR (7b)

The function g (Eq. 5a) does not depend on o’. Therefore, the first Euler’s
equation, Eq. 7a, simplifies to dg/dc = 0, and, consequently, one arrives at

WX R N P =00 e JR LR s o R (8a)

k¥ 3
o A+ )+, —x)

or, explicitly Y’ = =
"
(A + Y)-7(>\z—x)

The solution Y(x, k¥/F, N\, \,, e) of this first-order differential equation
is a family of extremals (potential slip lines); e is a parameter of integration.
The solution to the problem is realized on a member (the critical slip line)
of this family.

A slip line Y(x, k¥/F, \,, \,, e) has to satisfy the geometrical boundary
conditions: Y/(x = x,) = y(x,) and Y/(x = x,) = y(x,). It follows, therefore,
that e and x, may be expressed in terms of \,, A,, and x_,: e = e(A,, A,,
xo); xn = xn()\ 13 R2’ xa)'

Writing Eq. 5a for the family of extremals Y(x, ky/F, A, \,, x,) and using
Egs. 5b and 8a one gets

Extr G = Extr X ’ Sdx
y(x) Y (x)
a(x)

*o

=  Extr

M,xz,x.,g SIRY (X)X AN S XN SN | 7= e S R e ©)

X0

Thus, using the first Euler’s equation, the problem of extremization of the
functional G with respect to two functions y (x), o(x) is reduced to the problem
of extremization of the functional § ;= S dx with respect to one function, Y (x).
However, Y(x) is determined by Eq. 8b as a function of three parameters
A5 A, and x,. Therefore, the functional §}» S dx is in fact a function of
the parameters A\, \,, and x,, so that the extremization is to be done with
respect to these three parameters.

Inspection of the definition of S, Eq. 6b, shows that is always possible to
factorize X, and write Eq. 9 in the following way

Extr { I[Y(x),\;,\,,x,,D] dx
A, Ay, x,

X0

~X,,X "J[Y(x),x,,xz,xo,D]dx}=0 ................ (10)

xo
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The form of the functions I and J varies from problem to problem. It can
be shown that Eq. 10 is equivalent to
S Idx

Jdx

*o

X..= Extr in which W= (¢8))

ex
12 25 X,

WY (x), Nis A3, X,, D]

The specification of W for different LE problems will be given subsequently.

Basic THEOREM

The value X_, in Eq. 11 will represent the solution to the problem if the
constraints, Eqs. 4b and 4c, may be satisfied. However, since Eq. 11 is indepen-
dent of o(x), any two-parametric o(x,e,,e,) function may satisfy these two
constraints. Therefore, X, , defined by Eq. 11, actually provides the solution
to the problem, and this solution is independent of o (x).

Thus, the analysis performed so far makes possible to formulate the following
basic theorem of limiting equilibrium:

The extreme value X, of an extremization parameter X is independent
of the normal stress distribution, o (x), along the critical slip line Y(x).

This theorem is completely general. It has been established without the specifi-
cation of the extreme-value problem dealt with, thus it is valid for every such
problem.

In the performed analysis no restrictions were imposed on the character of
¢, 4, 4, ¥, p,, and p, distributions. The &(x,y,y’) distribution was restricted
to continuous functions, since only in this case the first Euler’s equation has
a form that is common to the whole soil profile. However, later it will be
shown that the basic theorem also holds in the case of discontinuous ¢
distributions.

The basic theorem does not contradict the initial presentation, according to
which extremization parameter X depends on both functions y(x) and o(x).
In general, functional X depends on both functions. However, as the theorem
states, in the class of potential slip lines the dependence on o (x) disappears.

It follows from the analysis that every two-parametric function o(x,e,,e,)
is a solution of the variational problem. On the other hand, the second Euler’s
equation, Eq. 7b, provides a first-order differential equation, the solution of
which, o(x,e,), depends on one parameter only. These two results do not
contradict each other since o (x, e,) is included in the family o (x, e, , €,). Further-
more, since the numerical value of X, can be established without the actual
determination of the o function, it is not necessary to investigate the o solutions.

Egs. 8b and 11 are the main results of the variational analysis. Eq. 8b
characterizes the form of the potential slip lines and Eq. 11 defines function
W, the extremization of which provides the numerical value of X.,. Eq. 8b
depends on one property function ¢(x,y,y") only. This means that the character
of the potential slip lines depends on &(x,y,y") distribution only. This does
not imply that the critical slip line is independent of ¢(x, y, »"), ¥(x,p), u(x,y),
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¥ (%), p.(x), and p,(x) distributions. These distributions enter the extremization
function W and select the critical slip line from the potential ones. It is important
to notice that the extremization of W is carried out over three variables (A, \,,
and x,) only. Therefore, the solution may be obtained by the conventional
trial-and-error technique, which is a common procedure in slope stability
problems.

GeomeTricaL AnaLysis: Mobes oF FAILURE

The result stated in the basic theorem is surprising. In order to understand
its nature let us consider the differential equation of the potential slip lines

direction of
sliding

od/

o(¥/Frd/
FIG. 3.—Character of Potential Slip Lines

(Eq. 8b) in greater detail. Going over to the polar coordinates (r,0) by means
of the following transformation

N,—x=r@)cos8; AN +Y=r@®sinb .................. (12)
g ky
Eq. 8b may be written as  ry = -;— Tacaan. e o Naed L e AL (13)

The coordinates transformation implies that parameters A\, and A\, may be
interpreted as coordinates of a point. Thus, in the polar coordinate system
with the origin at the point (x, = \,, . = —\,), the family of the potential
slip lines is described by Eq. 13.

From Egs. 12 and 13 and the definition of k it can be checked that in all
the problems being considered (Fig. 1), the expected sliding (failure) occurs
in the direction of increasing radius vector r (see Fig. 3). It is well known
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that in the case of polar curve r(8) the acute angle v between normal to the
curve and radius vector is given by

From Eq. 13 it follows that |r;/r| = ¢/ F. Thus, for our curves

Y
= el o 7 P erarmecrliPulrrr 3 oy e e s ooy o i 15
v = arc tan (F) (15)

Eq. 15 shows that every point of a potential slip line the acute angle between
normal to the line and the radius vector is equal to arc tan (/F).

On the other hand, o enters the LE equations only by means of vectors
of normal forces odl and vectors of frictional forces o (s /F)dl. Thus (see Fig.
3) at every point of a slip line the resultant vector R = adl + o(b/F)dl is
inclined to the normal to slip line by the angle arc tan ({/F). Therefore, at
every point of a slip line, vector R coincides with the direction of the radius
vector. Thus, R always passes through the origin (x, y.) of the polar coordinates.
This means, that the moment equation written about the point (x_,y.) should
not include o(x). By writing such an equation one gets {3 S dx. Referring
to Eq. 9, we recognize it as a moment equation written about (x.,y.). Eq.
11 is the final version of Eq. 9. Thus, we conclude that Eq. 11, providing
the solution, is actually the moment equation written about the point (x_,y.).

In the cases when at least one of \,, \, is infinite, point (x.,y,) — o and
the system of vectors R becomes a system of parallel vectors (passing through
a common point at infinity). The common direction of the R vectors is obviously

Ye -\,

tan p = T U S8 S S IR PR R SRR S 16
W= ~ (16)

c

It follows that there exists a direction tan m = \,/\, (perpendicular to the
p direction) for which the equation of equilibrium will be independent of o(x).
By writing such an equation one gets the equation {}» Sdx = 0, specified
for the cases under consideration. Thus, in these limit cases, Eq. 11 is reduced
from being a moment equation to the equilibrium equation, written for the
v direction. For the limit cases the equation of the potential slip lines, Eq.
8b, is reduced to

k"’t 1
———tanp —
F L

ky
tan + —
REF

All the limit cases are described by the u values from the diapason —m/2
<p<mw/2

Thus, we have two modes of potential slip lines. The first mode corresponds
to finite values of \,, A, and is described by Eq. 85 or Eq. 13. For this mode,
the basic Eq. 11 is a moment equilibrium equation. Therefore, the first mode
of slip lines may be considered as corresponding to rotational mode of failure.
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The second mode is a limit case of the first one, when at least one of A
X, is infinite. This mode is described by Eq. 17. The basic Eq. 11 is a linear
equilibrium equation. Therefore, the second mode of slip lines may be considered
as corresponding to translational mode of failure. The analysis performed in
the present section shows that the result stated in the basic theorem is a
consequence of the geometrical properties of the potential slip lines. Therefore,
it is possible to formulate the basic theorem in purely geometrical terms:

The character of the potential slip lines is such that the system of vectors
R = adl + o(¥/F)dl either passes through a common point (x_,y,)
(rotational mode of failure, orit is a system of parallel vectors (translational
mode of failure).

The geometrical formulation of the basic theorem explains why extreme value
X, is independent of o(x). Both formulations of the basic theorem are equivalent
since either one implies the other. However, the geometrical formulation is
more explicit and contains a ‘‘recipe’’ which makes possible the construction
of potential slip lines.

Laverep Soi ProriLES

Eq. 8b implies, that the character of the potential slip lines depends only
on the ¢ distribution. The distributions ¢, v, u, p,, and p, enter Eq. 11 under
the sign of integration, and therefore their character does not influence the
analysis. This means that a special analysis is necessary only in the case of
discontinuous ¢ distributions. In practice this case is relevant to a soil profile
consisting of a number of layers. For such a profile, ¢ is a partially continuous
function with discontinuities at the interfaces.

The analysis presented so far pertains to the case of continuous ¢ distributions.
Now the case of discontinuous ¢ distributions will be considered. It can be
shown (Bolza, Ref. 3) that in this case: (1) Euler’s Eq. 8b is valid for each
layer; (2) isoperimetric constants \,, A, have the same values for every layer;
and (3) a curve constructed from segments, which are solutions of Euler’s equation
for every layer, is a potential slip line. It follows therefore, that the geometrical
formulation of the basic theorem is also valid in the case of discontinuous
¢ distributions. Thus, the basic theorem and the basic Eqs. 86 and 11 are
completely general.

It can be shown that in certain cases a segment of the interface may be
a part of the potential slip line. Thus:

In the case of layered soil profile, the potential slip line consists of segments,
which are solutions of the first Euler’s equation for every layer. The
potential slip line may include also segments of interfaces.

The analysis of the interface conditions is considered to be beyond the scope
of the present paper, and it will be given in future publications dealing with
numerical solutions of LE problems.

Homogeneous and Isotropic Layers.—For such a profile, solutions of Euler’s
equation, corresponding to finite values of A, and A, (Eq. 13), are log spirals
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r,(8) = E, exp (ky,0/F) having a common focus (x_,y.). Index i is the number
of a layer and E, is the corresponding constant of integration. In the cases
when at least one of A\, \, is infinite, solutions of Euler’s equation (Eq. 17)
are straight lines. Therefore:

In the case of homogeneous and isotropic layers the potential slip line
consists of either segments of log-spirals that have a common focus (x.,y,)
(rotational mode of failure) or segments of straight lines (translational
mode of failure). The potential slip line may include also segments of
interfaces.

Homogeneous and Isotropic Profile

In the case of homogeneous and isotropic soil profile the potential s}ip
line is either a log-spiral (rotational mode of failure) or a straight line
(translational mode of failure).

SpeciFicaTion oF DiFFERENT PROBLEMS

The existence of two distinct modes of failure makes it necessary to write
Eq. 11 in the following way

X,= Extr W: (RM); X, =Extt W: (IM) . .......... (18)
)\I H A29 X, K, X,

in which RM and TM designate the rotational and translational modes of failure,

respectively. Function W was defined as § ;= Idx/{ ;» Jdx (see Eq. 11) which

I and J are determined as a result of the factorization of X, from Eq. 9.
Function S, entering Eq. 9, may be written as

SE=A B+ (X=X, YOI E. ot L e R 19)
in which 4 =k(c —ud)[(Y (A, =x)+ (A, + Y)]: (RM);
A=k(c—ub)(Y' —tanp): (TM) . . . ... ... ... (20a)
B=[p, +3(J = V)I(A,—x) —p,(A +y): (RM);

B=p, +3y(y—Y)+p,tanp: (TM) . ................. (20b)
C=P[A;—x,)cosB + (N, +y,)sinB] —M: (RM);

C=P(cosf —tanpsinB): (TM) .. .................. (20¢c)

Auxiliary functions A4, B, and C will be used in the specification of W for

different problems. i
Slope Stability Problem (X,, = F, k = 1).—In this case function W has the

following form

S A dx

W=—""——: RMandTM) .................... @1
S Bdx+ C

*o
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It is of interest to consider the classical problem of a straight slope in a
homogeneous and isotropic soil without pore pressure or external loads. As
it was established before, in this case the potential slip line is either a log
spiral or a straight line. It follows that for the homogeneous case the present
approach leads to two solutions. It can be shown that the first one (based
on log spirals) is equivalent to the solution procedure suggested by Rendulic
(7), while the second one (based on straight lines) is equivalent to Culmann’s
solution (4).

It is well known that Rendulic’s solution yield results that are almost identical
with those given by Taylor (8). Culmann’s results are generally less conservative
than those given in Taylor’s stability chart. It follows, therefore, that in the
case of homogeneous slope, a solution based on the present approach is practically
identical with Taylor’s chart.

Limiting Load Problem (X,, = P).—In this case function W is given by

X’. A
——Bldx+ M
« \F
W= . : (RM);
Ay—x,)cosB + (A, +y,)sinp

X" A
X (—- — B) dx
w2 \F

cosp —tanpsin

Two types of problems are included in this case, i.e., the bearing capacity
of foundation and the limiting forces (active and passive) acting on retaining
structures. These two types of problems differ from each other in the assumed
nature of the force P. In the bearing capacity problem P is assumed to be
an external force, whose location and inclination are known. In the retaining
structure, problem P is assumed to be an interaction force whose location and
inclination are governed by the possible mode of displacement of the structure
under consideration. The LE approach cannot handle displacements; therefore,
the distinction between the two types of problems is lost in the present approach.
However, the global effect of the possible mode of displacement can be
incorporated in the LE analysis by the appropriate choice of the location (x s Vo)
and inclination B of P. The difference between the active and passive cases
is regulated by the parameter k: (k = 1) corresponds to the active case; k
= —1 to the passive case).

In the classical bearing capacity problem (uniform soil and horizontal soil
surface) the straight line can not be a slip line. Therefore, log spiral is the
critical slip line. The rigorous solution of the problem was obtained by Garber
and Baker (5). The variational analysis performed in that work confirmed the
applicability of the principle of superposition suggested by Terzaghi (9). It was
found that the results agree well with known experimental data.

Limiting Location Problem (X, = x,).—This case corresponds to the problems
of the critical location of force P. Such is, for instance, the problem of the
minimal distance from the head of a slope, at which a given load, P, may
be safely applied. The segment of the soil surface, on which the load is to
be applied, may be ‘approximated by a straight line. Therefore, the relation
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between x, and y, may be taken as y, = ax, + b (a and b are constants).
Function W is expressed by

Sx"(%—B)dx——P[)\zcosB+()\,+b)Sinﬁ] + M

= 2 : (RM 23)
i P(asinf — cos B) ®M) ¢

Physically, translation is indifferent to the location of an external force. Thereforg,
in the present problem only the rotational mode has to be considered. This

Assume a set of )‘1“2”‘0
(and F in the case of slope),
or a set of HoXy

(and F in the case of slope)

Y

Determine Y(x) from Eq. (8b),
or from Eq.(17)

Use Eq.(18) to obtain Xy

Slope
stability
problem?

Take

F.=F
new

A value of xex has been obtained.

Repeat calculations for other sets

until extremum xex 1s obtained

FIG. 4—Computation Scheme

observation is reflected in the analysis by the fact that the function S (Eqgs.
19 and 20) is independent of x, in the case of translational mode.
Limiting Direction Problem (X, = B).—It may be of interest to find the
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maximum value of B, i.e., to establish the critical inclination at which a given
load, P, may be safely applied. In order to factorize parameter 8, function
C (Eq. 20c) has to be rewritten

C=PV(,—x,)"+N\,+y,) cos(B +w)—M: (RM);
cos (B +p)

COoS

in which @ = arc tan [(\, + y,)/(x, — \,)]. Taking cos (B + ) or cos
(B + ) as X,,, the function W is given by

(4
S (——B)dx+M
5, \E

T PVOG S ) RM);
)
— — B | dx
X*" £ ™
- : (IM) 7o i e i e Bl s @5)
Cos |

Limiting Moment Problem (X, = M).—In this case function W has the form

W=P[A,—x,)cosB + A\, +y,)sinB] — S (;—— B) dx: (RM) (26)
Physically, translation is independent of external moments. Thus, only the
rotational mode has to be considered. This argument is supported by the fact
that the function S (Egs. 19 and 20) does not include M in the case of the
translational mode.

Additional Problems.—Not only a single parameter from the set (F, P, XEn
¥p» B, and M) may be used as the extremization parameter, but any combination
of these parameters that possess a physical significance may alternatively be
used for this purpose. It may be of interest, for instance, to establish the maximal
horizontal force P, = P sin § that may be safely applied to a footing acted

upon by a given vertical force P, = P cos B. The function C (Eq. 20c) may
be rewritten as

C=P,(M,~x,)+P (0 +y,)-M: (RM); C=P,—P tanp: (TM) (27)

Taking X, = P, one gets

X’l A
S (;—B)dx—Py()\z—xp)+M

W=-="0 1 (RM);
)‘l+yp
Xn A
Py—S (—-——B)dx
W= 2 M ™
e (I MY og 80 St L 37 o Dakas yabul-e ! 10C b 28)
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COMPUTATION SCHEME

The computation scheme for an extreme-value problem is given in Fig. 4.
As it is seen from the scheme, in the case of the slope-stability problem an
additional iterational procedure in F is needed. The necessity of this procedure
follows from the fact that F enters the equations of potential slip lines (Eqs.
8b and 17).

Summary AND CONCLUSIONS

A unified formulation of extreme-value problems of soil mechanics is presented.
The unified problem includes among others the slope-stability problem, problems
of the limiting magnitude, location or direction of a load, and the problem
of the limiting external moment. The solution to the unified problem is obtained
in the framework of the limiting equilibrium approach.

Variational calculus served as the mathematical tool in the present analysis.
The analysis is free of any a priori assumptions with respect to the functions
y(x) and o(x) (slip line and normal stress distribution). The analysis takes into
account all the possible distributions of soil properties, external loads, and
pore-water pressure.

A number of fundamental results were established. These results are:

1. The extreme value, X,,, of extremization parameter X is independent of
normal stress distribution o(x) along critical slip line Y(x). This statement
constitutes a basic theorem of limiting equilibrium.

2. The character of the potential slip lines is such that the system of vectors
R = odl + o(s/F)dl cither passes through a common point (X, y,.) (Totational
mode of failure), or it is a system of parallel vectors (translational mode of
failure). Vector R is the resultant of the normal odl and frictional o(ys/F)dl
forces. This statement constitutes the geometrical formulation of the basic theorem
and establishes two alternative modes of failure. Euler’s differential equations,
which control the shape of the potential slip lines in each of two modes, are
derived. The character of the potential slip lines depends on the ¢ distribution
only while the distributions of ¢, ¥, u, y, p,, and p, control the selection of
the critical slip line from the potential ones.

In the case of layered soil profile, the potential slip line consists of segments,
which are solutions of Euler’s equations for every layer. The potential slip
line may also include segments of interfaces. In the special case of homogeneous
and isotropic layers the potential slip line consists of either segments of log
spirals that have a common focus (x,,y.) (rotational mode) or segments of
straight lines (translational mode). In the case of homogeneous and isotropic
soil profile, the potential slip line is either a log spiral (rotational mode) or
a straight line (translational mode).

The critical value of an extremization parameter follows from the extremization
of a function W, the form of which varies from one particular problem to
another. The explicit form of this function, corresponding to different problems,
is presented. The extremization of W is carried out over three variables in
the case of rotational mode and over two variables in the case of translational
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mode. Thus, a simple trial aund error procedure may be used for the determination
of numerical results.

The approach presented herein has been applied to two classical problems:
(1) Bearing capacity of shallow foundations; and (2) the stability of straight
slopes. Comparison of the results obtained by the present approach, with available
solutions, confirms the validity of the generalized analysis. It seems, therefore,
that the present approach may be applied with confidence to the analysis of
different extreme-value problems, for which no reliable solutions are presently
available.
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Arpenpix Il.—NotaTioN
The following symbols are used in this paper:

A,B,C = auxiliary functions;

a,b = parameters;
¢ = cohesion;
D = data of problem;
E,ee e, = parameters of integration;

F = safety factor with respect to strength;
G = auxiliary functional;

g = Lagrange’s function;
M = auxiliary functions;
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auxiliary functions;

number of layer;

auxiliary parameter;
auxiliary functions;

arc length along y(x);
external moment;

external force;

projections of P;
distributions of external loads;
resultant vector;

potential slip line in polar coordinates;
pore-water pressure;
extremization function;
extremization functional;
extreme value of X;

origin of polar coordinates;
end points of y(x);

point of P application;
potential slip line (extremal);
origin of polar coordinates;
slip line (general);

soil surface;

auxiliary functional;

angle of y(x) inclination;
direction of P;

average unit weight of soil section (y — y) dx;

Dirac’s function;
direction perpendicular to p direction;
Lagrange’s undetermined multipliers;

direction of R (translational mode of failure);
angle between normal to 7(8) and radius vector;
normal and tangential stress distributions;

angle of internal friction;
tan ¢; and
auxiliary angle.
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i 16000 PILE LOAD TESTS: CYCLIC LOADS AND LOAD RATES

KEY WORDS: Capacity; Clays; Compression; Cyclic loads; Loading rate;
Pile load tests (cyclic loading); Soils; Steel piles; Stratigraphy; Tension;
Unconsolidated soils
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ABSTRACT: Two series of axial load tests were performed on four 14-in. (356-mm)
diam, open-end, steel pipe piles at an interval of about 320 days. Pile lengths of 40 ft
or 50 ft (12.2 or 15.2 m) were installed below conductors driven to depths ranging
from 115 ft to 320 ft (35 m to 98 m) into a strong underconsolidated clay. Each pile
was subjected to as many as 26 tests. Data presented includes: (1) Compression and
tension tests; (2) tests performed at different times after driving and after previous
tests; and (3) incremental loading and constant rate of loading. Pile capacity increased
40% to 75% when the loading rate increased by three orders of magnitude. The one-
way cyclic loading applied in this study did not effect the ultimate capacity, but large
displacement began to accumulate when the maximum cyclic load reached 80% of the
static capacity.

REFERENCE: Kraft, Leland M., Cox, William R., and Verner, Edward A., “Pile Load
Tests: Cyclic Loads and Varying Load Rates,” Journal of the Geotechnical Engineering
Division, ASCE, Vol. 107, No. GT1, Proc. Paper 16000, January, 1981, pp. 1-19

KEY WORDS: Earth dams; Earthquakes; Embankments; Soil dynamics

ABSTRACT: This paper presents an analytical method to study free and forced
longitudinal vibrations of embankment dams. Both shear and dilatational deformations
are taken into account, and the dam is modeled as a linear homogeneous prism with a
wedge-shape cross section, bounded by two vertical (abutment) and. one horizontal
(riverbed) planes. Numerical results demonstrate the effect of the length and height of
the dam on its. natural frequencies and its .modal displacement and. strain shapes. It is
shown that shear deformations are more important in relatively long dams, whereas the
opposite is true with dams built in narrow canyons. The method is evaluted through
two case histories involving an earthfill and a rockfill dam. Close agreement exists
between predicted and observed natural frequencies, but the distribution of peak
accelerations within the dam is badly predicted.

REFERENCE: Gazetas, George, “Longitudinal Vibrations of, Embankment Dams,”
Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No. GT1, Proc.
Paper 15980, January, 1981, pp. 21-40

15980 LONGITUDINAL VIBRATIONS OF EMBANKMENT DAMS o

Offshore structures; Pile settlement; Piles (foundations); Shear strain; Skin
friction; Soil mechanics s

ABSTRACT: A number of solutions have been obtained for a typical offshore pile, to
determine the influence of a-number of the input parameters on the computered cyclic
response. More  significant ' parameters - include the | critical shear. strain at which
significant degradation of skin friction occurs, the rate of loading on the pile, and the
distributions of static skin friction and soil modulus along the pile.- The analysis
predicts a gradual decrease in cyclic stiffness of the pile with increasing numbers of
cycles and increasing ‘cyclic load level, but a very sudden decrease in ultimate load
{ capacity once the (half-peak-to-peak) cyclic load level exceeds 50% to 60% of the
ultimate static load capacity. These theoretical findings are broadly confirmed by the
results of small-scale laboratory model tests.

REFERENCE: Poulos, Harry G., “Cyclic Axial Response of Single File,” Journal of
the Geotechnical Engineering Division, ASCE, Vol. 107, No. GT1, Proc. Paper
15979, January, 1981, pp. 41-58
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EXxTREME-VALUE ProBLEMS oF LiMiming EQuiLiBRIUM *
‘ Discussion by Reginald A. Barron,” F. ASCE

This paper presents an analysis method for stability problems at limiting
equilibrium using the method of variational calculus. This calculus is not new,
but the writer doubts that many engineers in the field are familiar with it.
If it is to be used by the profession, additional details should be given. It
is considered by the writer that important omissions were made in this paper
which, had they been included, would have improved the clarity and value
of the paper. These omissions are:

1. No list of assumptions is given. Near the end of the introduction the
authors state that none are used. Certainly the use of the effective stress concept
as expressed by Eq. 1 is one. Another is the use of safety factor, F, to apply
not only for the overall stability, but also as a point safety factor when F
is greater than unity.

2. No illustrative examples are given. To aid the comprehension by most
engineers a detailed example would be most useful.

3. No comparison with results of others are given. Near the end of the section
on “Slope Stability Problems’ the authors state the results of their method
““are almost identical with those given by Taylor (8).”” If this .is so, what is
the purpose for using a more complicated method of analysis?

4. No discussion is included indicating the influence of the soil stress-strain
properties on the validity of the method. In fact, in the second paragraph of
the “‘Summary and Conclusions” the authors state that the method ‘‘takes into
account all the possible distribution of soil properties . . . and pore-water
pressures.”

Nowhere in the paper are the strength parameters defined. The writer assumes
since an effective stress equation is used (Eq. 1) that the strength parameters
are those obtained from consolidated-drained (S) shear tests. The writer concurs
in the application of Eq. 1 to failure conditions where F is equal to unity;
but for cases where F is greater than unity the drained shear strength for the
nonfailure effective normal stress is generally not available. See Barron (10,11)
Gould (14) and Johnson (12,13). Except for dry, cohesionless soils the potential
shear strength of a wet soil not at a failure condition is the undrained strength
that can be obtained without any change in the water content. The shear strength
tests are, therefore, the comsolidated-undrained (R) or the unconsolidated-un-
drained (Q) as the conditions to be analyzed indicate. In the writer’s opinion,

®October, 1979, by Michael Garber and Rafael Baker (Proc. Paper 14901).
*Consulting Engr., 62 Horshoe Rd., Guilford, Conn. 06437.
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the concept indicated by Eq. 1 is the most misused idea of soil mechanics.

If a stable stress condition exists in a moist soil and an undrained shear
test is made, the effective stress path for a dilative soil has a positive slope
and at failure the pore pressure can be negative (gage) resulting in a shear
strength at failure larger than that given by Eq. 1 with the effective normal
stress that which exists on the potential failure surface at the initiative of the
test. Because large negative pore pressures (gage) can occur in a test using
la:rge back pressure to prevent pore-water cavitation, the full shear strength
given by this test may not be conservative to use in a stability study.

.If the soil is compressive (strain-softening), then the effective stress path
rises to the failure strength curve with a negative slope. Large positive pore
pressures can exist and the shear strength at failure is less than that indicated
by Eq. 1. The shear strength indicated by Eq. 1 can be realized only if water
c?lg‘e]ntlchanges can occur. If they cannot, then it is improper to use the results
o ik

In addition, if F, the average safety factor, is larger than unity, then the
stress. conditions in the soil mass are highly indeterminate and the concept
of a limiting equilibrium condition with a reduced shear strength being applied
to a given problem is certainly an assumption, but one which is commonly
made without, however, claims being made for any greater degree of exactness.
An excellent discussion of the difficulties of analyzing slopes is given by Johnson
(12,13). It would be desirable if the authors define Dirac’s function and Lagrange’s
undetermined multipliers.

In conclusion, the writer questions the advisability of publishing theoretical
papers of this kind without it being so written that it can be comprehended
by a large portion of the society’s membership.
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Discussion by Ryszard J. Izbicki*

The author.s.applied a generalized limit equilibrium approach to the problems
of slope stability and problems of limiting magnitude, and location or direction
of a load and external moment. The most important result is a basic theorem

“Adjunct, Inst. of Geotechnics, Technical Univ. of Wi
53030 Wrorten o K v. O roclaw, ul. Glogowska 9/72,
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of limit equilibrium which states that the critical value of the extermization
parameter (F = the factor of safety; P = an external load; M = an external
moment, etc.) is independent of the normal stress distribution along the critical
slip line. Simultaneously, the variational analysis establishes the existence of
two (rotational and translational) modes of failure mechanism. In the case of
the rotational mode of failure the potential slip lines are a log-spiral but if
the translational mode of failure exists, the potential slip lines are straight lines.
The analysis was performed without any a priori assumptions regarding slip
line and normal stress distribution; all the equilibrium equations are satisfied
and no aditional assumptions were in the investigation process. The results
stated in the paper are very interesting but are not surprising.

So, approximate methods for solving the problems of soil stability may be
divided into (15,16,18): (1) Methods of limit analysis based on two limit theorems;
and (2) methods of approximate satisfying of conditions of equilibrium and
yield criterion only in the definite points or regions of the material considered.
These method are called the limit equilibrium methods.

In the limit analysis for elastic or rigid-plastic material obeying the associated
flow law the validity of two basic limit theorems is proved, making use of
the principle of maximum plastic work. According to the statement of this
theorems, in order to properly bound the ‘‘true’ solution, it is necessary to
find a kinematically admissible failure mechanism (velocity or flow field) in
order to obtain an upper bound solution. A statically admissible stress field,
satisfying all the equilibrium conditions and nowhere violating the yield criterion,
will be required for a lower bound solution. If the upper and lower bounds
coincide, the exact value of the collapse, or limit, load (factor of safety, etc.)
is determined (15,18). .

An upper bound solution may be obtained (see Ref. 18) by: (1) Comparing
the sum of the total work of external forces and total work of body forces
with the total internal dissipation of energy (this method is called herein energy
approach); or (2) making use of equilibrium conditions of the field of forces
(stresses) associated with the assumed kinematically admissible failure mechanism
(equilibrium approach).

Both the approaches are equivalent. It can be observed, that the equations
of the work balance, may be treated as an equation of virtual work and, thus,
as an equation that expresses the condition of global equilibrium. A number
of examples solved by means of the two approaches are discussed in Ref.
18.

The upper bound equilibrium approach is more advantageous in relation to
the analysis starting from work balance. Namely, it provides more information
about the stress distribution inside the material or the force (load) distribution
along contact lines. There are, however, difficulties in applying this approach
in the case of layered soil profile and composed failure mechanisms, which
consist of rigid zones (blocks) and soft zones.

In the case of associated flow law the energy dissipated within the failure
mechanism is independent of the stress distribution. Therefore the determined
value of limit load (and all other parameters) will be independent of the internal
stress distribution. In the kinematically admissible failure mechanism, the potential
slip lines are either log-spirals (rotational mode) or straight lines (translational
mode).
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The aforementioned properties of the upper bound solutions and kinematically
admissible mechanisms follow from the associated flow law. The same properties
are obtained by the authors by applying, in the light of the assumed classification
of methods, the upper bound generalized equilibrium approach. Their considera-
tions, however, are limited to the case of failure mechanisms consisting of
one rigid block which undergoes either rotation or translation.

The upper bound energy approach allows the consideration of complex failure
mechanisms composed of a number of rigid blocks which undergo either
translation or rotation, as well as of mechanisms containing soft zones, which
are deformed during plastic strain. Some examples on composed failure mecha-
nisms have been given by Gudehus (17), Chen (15), the writer and Mroz (18),
and Karal (19).

To conclude we may add that conventional limit equilibrium methods based
on static equilibrium of forces (or stresses) acting on the yield region are in
many cases equivalent to the upper bound method (see equilibrium approach).
However, the assumed failure mechanism must be kinematically admissible and
it must be associated by the appropriate volumetric dilatation. When the failure
mechanism is not kinematically admisible from viewpoint of limit analysis, it
may be neither upper bound not the lower one. However, each upper bound
(equilibrium approach) solution is always equivalent to the limit equilibrium
method (15,18).
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Discussion by A. Lucefio® and E. Castillo®

The authors state a generalized extreme-value problem of LE as a search
for a pair of functions y(x) and o (x) that realize the extremum X,, of X subject
to the satisfaction of the three LE equations (3).

However it can be easily demonstrated that functional X[y (x),o(x)] is, in
general, unbounded. Therefore there exists a potential sliding line y(x) and
a normal stress distribution o(x) giving a safety factor as small as desired,

*Escvela Técnica Superior de Ingenieros de Caminos, Canales, y Puertos, opto. de
Matemaiticas Aplicadas a la Ingenieria, Universidad de Santander, Avda. de los Castros,
s/n—Santander, Espafa.

®Escvela Técnica Superior de Ingenieros de Caminos, Canales, y Puertos, opto. de
Matemiticas Aplicadas a la Ingenieria, Avda. de los Castros, s/n—Santander, Espaiia.
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and in consequence the extreme problem is incorrectly stated.

In order to give an example of the unbounded character of functional
X [y(x),0(x)] let us consider Eqs. 3a, 3b and 3c for the case of a slope in
an homogeneous soil and lack of pore water pressure and external loads. These
equations in adimensional form become (when k = 1):

S l[(N+S1|:)—FSY']dX=O ...................... 29)
K l[(N+Sul:)Y’—F(I7——Y—S)] X =034 00 o 2841 . q (SRIAE. (30)

Xy
S (N+SWYWY-Y'X)—F[SX+Y' Y)-X(Y-Y)]}dX=0... (3]
Xo

in which the following adimensional parameters have been used: N = ¢/v H,
S=o/yH =10, X=x/H Y=y/H Y=7/H Y = dY/dX,
where X,, X, = the abscissas of the end points of the sliding line; and H
= the height of the slope.

By making X = F (Baker and Garber, 1978), Eq. 29 gives:

S '(N+S\1:)dX

Xo

F= %]
S SY'dXx
Xo

So, according to Garber and Baker, the problem can be stated as minimizing
Eq. 32 subject to conditions described by Eqs. 30 and 31.

One way of demonstrating that Eq. 32, subject to Eqgs. 30 and 31, does
not attain an absolute minimum is by selecting a sliding line Y*(X), not a
log-spiral, and by using the Ritz method to check that the functional F* [S(X)]
obtained by substituting the equation of this sliding line in Eq. 32 and Egs.
30 and 31 has no absolute minimum.

As it is well known, Ritz’s method consists of a discretization of the vector
space of possible solutions. So, a system of basic functions [/,(X)] is selected
and the solution is assumed to be of the type:

S = el (X a,=cte, (=1,2.0m) oo 33)

According to this assumption the functional F* [S(X)] becomes a function
of n-2 variables from which its minimum must be investigated.

In effect, let us consider a slope defined by the following geometrical and
geotechnical characteristics: ¢ = 1 Tn/m”; ¥ = 1g(¢) = L, v = 2 Tn/m?’;
and H =3 m.

The characteristics of the slope, in adimensional form are: N = ¢/y H =

1/6, ¥ = 1 and its equation is given by:
Y=0, #x=0, Y=3X; #Xx€(0,1/3);
Ficiys mgeiy = 1973080 N e, W 1 a0Ee e n AIEE 34
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The safety factor of this slope according to the solution given by Euler’s
equations is approx 1.8.

If the following potential slip line: Y*(X) = 3X*> — 1/3 and the system
of basic functions: /,(X) = X*; 1,(X) = X; I,(X) = 1 are selected, functional
F*[S(X)], according to Eqgs. 32, 30 and 31, becomes a function of one variable
defined by the following system of equations:

2=5F*)o,+(3—12F*)a, + (18 — 18F *)a,
(S+2F*) o, +(12+3F*)a,+ (18 + 18F*)a, = -3 +9F* . .. ... (36)
(192 + 345F*)a , + (315 + 612F*)a , + (1,080 + 1,080F*)a ,

=180+ 195F% . o oot 37

This system can be solved in o,, a,, and a, for values of F* not equal
to —1/3. This shows that Eq. 32 subject to conditions described in Eqs. 30
and 31 is unbounded.

Nevertheless, it is worthwhile to make some comments:

il
|
w

1. Though the safety factor must be positive, this fact is not explicitly reflected
in the statement of the problem, and as a consequence the system, Egs. 35,
36 and 37 can be solved for negative values of F*.

2. Inthe same way, the condition given by the Mohr-Coulomb failure criterion:

SX)==N/W; FXE Xy X)) « o oo e e e (38)

is not included, and as a consequence the system of Egs. 35, 36, and 37 gives
solutions not satisfying this condition.

One way of taking into account these constraints in the statement of the
problem is by making:

F 2k 580 omlc puihilein sannmoad, & o aisainm st on g (39)

N
S(X) = [e(X)}* - J ............................ (40)

which lead to the system:

Xl N
S [.pé - K’(e’ —E—) Y'] X =0 0 it ' 8 ey e 1)

X, ) _ N

S [\be Y'—K’(Y— Y—e2+I)j|dX=0 ............. 42
Xl i N

S {q,e Y - Y’X)—K’[(ez—;,-)(X+ Y'Y)

- XY - Y)]}dX:O .......................... 43)

Eq. 41 defines functional K> = F which must be minimized subject to the
conditions described by Eqgs. 42 and 43.
The extremals of this new problem are exactly the same as those of the
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old functional and it can be demonstrated by a counterexample that the new
functional does not attain a relative minimum either (the first writer, 1979;
the writers, 1980).
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Closure by Michael Garber” and Rafael Baker®

The writers thank all the discussers for the interest expressed in the paper.

The discussion by A. Luceno and E. Castillo suggests that in the extreme-value
problem of LE presented by the writers the extremization parameter {functional
X [y (x),o(x)]} is, in general, unbounded. The discussers claim that there always
exist a pair of functions y(x) and o(x) ‘‘giving (a) safety factor as small as
desired, and in consequence the extreme problem is incorrectly stated.”” To
prove it, the discussers provide a *‘counter example”” that, in their understanding,
clearly disqualifies the writers’ presentation. The example refers to a slope
which, according to the writers’ solution, has a safety factor of 1.8. The discussers
chose at random a potential slip line y (x) and assumed the pressure distribution
a(x) to be presented by a polynomial with three unknown parameters o, o5,
and a,. Substituting their functions y(x) and o(x) into the writers’ equilibrium
equations the discussers derived a system of three linear equations with respect
to three unknowns «,, a,, and a,. This system can be solved for almost any
value of the safety factor, F. It seems therefore, that the discussers can always
point out a pair, y(x) and o(x), that not only gives F less than 1.8 but, moreover,
F ‘‘as small as desired.” ‘

The point is, however, that there are natural restrictions on the value of
F as well as on the character of the o(x) function, and the discussers recognize
this as they make an attempt to modify the problem presentation. These restrictions
are: (1) F = 0 (the safety factor is non-negative by definition); and (2) o(x)
> —c/{ while ¢ # —c¢/¥ (a condition supplementing the Mohr-Coulomb failure
condition).

These restrictions were not mentioned explicitly in the paper, but as the
discussers know, théir incorporation does not change the variational solution.
If we consider the discussers “‘counter example” in view of these restrictions,

7Sr. Research Assoc., Transport Tech. Lab., Dept. of Mech. and Aeronautical Engrg.,
Room 203 C. J. Mackenzie Building, Carleton Univ., Ottawa, Canada K18 SB6..

®Sr. Research Fellow, Soil Mechanics Dept., Faculty of Civ. Engrg., Technion-Israel
Inst. of Tech., Haifa, Israel.
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then it fails to prove anything but the validity of the writers solution. The
nondimensional pressure distribution S(x) assumed by the discussers was in-
spected in the range 0 < F =< 4 [Figs. 5(b) and 5(c)] against restriction 2,
which in nondimensional terms is rewritten as S(x) = N /. It was found that
the minimal § always occurs at the end points x, and x, [Figs. 5(a) and 5(b)]
of the slip line y(x). As it can be seen from Figs. 5(b) and 5(c), S(x) satisfies
restriction 2 for F = 4 but fails to satisfy it for any 0 = F < 4. This implies
that F = 4 is the minimum the discussers can claim for their example without
violating the obvious restrictions previously mentioned. As 4 is greater than
1.8 the ‘‘counter example’’ clearly fails. Possibly in expectation of this the
discussers refer to another example that is supposed to demonstrate their point.
The reference is to two papers in Spanish (local bulletins) and one in English

S(xo), Six,) S(x)
0.4 0.6 X
1
0.2 0.4
S(x,)
X,
0 1 7 3 4 F 0.24 \
-0.2] SN/ o Xy iy e}
S(x,) \\
=0 s--N/y
-0.4 -0.2
-0.6 -0.4
-0.8 -0.6
{5¢c} {5p}

FIG. 5.—Investigation of Discusser's Example: (a) Discusser’'s Potential Slip Line;
(b) Pressure Distribution S(x) for Range 0 < F < 4; (c) Pressure at End Points
X, and x, for Range 0 < F < 4

(Symposium in India). The writers’ efforts to obtain these papers have been
unsuccessful and thus comment is reserved.

The variational solutions proved to satisfy restrictions 1 (which in general
has to be stated as X = 0, in which X = the extremization parameter) and
2 as demonstrated by solutions presented by the writers (5). Taking the opportuni-
ty, the writers would like to introduce an additional (kinematic) restriction that
must be imposed on the shape of y(x). This third restriction states that the
sliding is possible only when the curvature of y(x) decreases in the direction
of sliding. Thus, there are ‘‘proper’’ and ‘‘improper’’ potential slip lines, and
y(x) used by the discussers [see Fig. 5(a)] obviously belongs to the class of
‘‘improper.”’ The variational (extremal) Y (x) always satisfies the third restriction.
Indeed, using Eq. 8b the curvature p of Y(x) is expressed as
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—| - PR (44)
a+7? \ﬂ (k\b)
r + |1\ —
F

As was shown in the paper, the radius vector r increases in the direction of
sliding (see Geometrical Analysis section), consequently p, (Eq. 44), decreases
in the direction of sliding.

The discussion by R. A. Barron questions the manner in which the material
is presented. The writers readily agree with a number of points raised. The
original text was about 25% longer and it included more detail explanations
about the essence of the method and its limitations. We had, however, to follow
the reviewers request to considerably shorten the paper.

The discussion by R. J. Izbicki provides a profound analysis of the writers
method from the point of view of the limit analysis approach. The writers
found a special interest in this discussion.

Errata.—The following corrections should be made to the original paper:

Page 1158, paragraph 1, line 3: Should read ‘‘the negative x direction,” instead
of ‘‘the negative ¢ direction,”
Page 1164, line 10: Should read ‘‘(rotational mode of failure),”” instead of
“‘(rotational mode of failure,”



