VOL.108 NO.GT6. JUNE 1982

JOURNAL

OF THE
GEOTEGHNIGAL

ENGINEERING
DIVISION

PROCEEDINGS OF
THE AMERICAN SOCIETY
OF CIVIL ENGINEERS

AMERICAN
SOCIETY OF
cmviL
ENGINEERS
oL
Ll

®




VOL.108 NO.GT6. JUNE 1982

JOURNAL
OF ThE
GETEGHNIGAL
ENGINEERING
DIVISION

PROCEEDINGS OF
THE AMERICAN SOCIETY
OF CIVIL ENGINEERS

AMERICAN
SOCIETY OF
cviL
ENGINEERS
FOUNDED
1852

®

Copyright© 1982 by
American Society
of Civil Engineers

All Rights Reserved

ISSN 0093-6405

William F. Marcuson lll, Editor
U.S. Army Engineers



AMERICAN SOCIETY
OF CIVIL ENGINEERS

BOARD OF DIRECTION

President
James R. Sims

Past President
Irvan F. Mendenhall

President Elect
John H. Wiedeman

Vice Presidents

Lyman R. Gillis Paul A. Kuhn

Albert A. Grant William H. Taylor
Directors

Martin G. Abegg Arthur R. McDaniel

L. G. Byrd Robert L. Morris

Frederick W. DeWitt Paul R. Munger

Larry J. Feeser William R. Neuman

John A. Focht, Jr.
Sergio Gonzalez-Karg
Kenneth D. Hansen
Ronald C. Hirschfeld
Louis M. Laushey
Leon D. Luck

Leonard S. Oberman
John D. Parkhurst
Celestino R. Pennoni
Robert B. Rhode
Gerald E. Speitel
Lawrence E. Wilson, Jr.
Richard S. Woodruff

EXECUTIVE OFFICERS

Louis L. Meier, Executive Director

Donald A. Buzzell, Assistant Executive Director
William H. Wisely, Executive Director Emeritus
Michael N. Salgo, Treasurer

Elmer B. Isaak, Assistant Treasurer

STAFF DIRECTORS

Alexandra Bellow, Director, Human Resources

Joseph A. DeFiglia, Director, Management
Information Services

David Dresia, Director, Publications

Barker D. Herr, Director, Membership

Richard A. Jeffers, Controller

Edwin Jones, Managing Director for Technical
Affairs

Carl E. Nelson, Director, Field Services

Albert W. Turchick, Director, Technical Services

George K. Wadlin, Director, Education Services

R. Lawrence Whipple, Director, Engineering
Management Services

COMMITTEE ON PUBLICATIONS

William R. Neuman, Chairman

Martin G. Abegg Ronald C. Hirschfeld

John A. Focht, Jr. Paul R. Munger
Lawrence E. Wilson, Jr.

GEOTECHNICAL ENGINEERING DIVISION

Executive Committee
Ernest T. Selig, Chairman
Harvey E. Wahls, Vice Chairman
John T. Christian
Robert D. Darragh, Jr., Secretary
Roy E. Olson, Management Group E Contact

Robert Schuster

Member
Richard D. Woods, News Correspondent
Publications Committee
William F. Marcuson |ll, Chairman and Editor
0. B. Andersland Raymond J. Krize)
John E. Anderson C.C. La
Warren J. Baker Poul V. Lade

Don C. Banks Leonard J. Langfelder
James M. Bell Felipe A. Len-Rios
Chandra S. Brahama Gholamreza Mesri
G. W. Clough Donald J. Murphy
Tuncer B. Edil S. V. Nathan
Herbert H. Einstein Thom L. Neff
Arley G. Franklin Edward A. Nowatzki
D. H. Gray Michael W. O'Neill
Bobby Hardin Jean H. Prevost
Cornelius J. Higgins Adel Saada

William H. Highter Surendra K. Saxena

Robert D. Holtz Robert L. Schiffman
lzzat M. Idriss Charles W. Schwartz
L. H. Irwin Woodland G. Schockley
Jey K. Jeyapalan Marshall L. Silver
Reuben H. Karol G. R. Thiers
H. Y. Ko D. D. Treadwell
William D. Kovacs Charles R. Ullrich
Leland M. Kraft J. Lawrence Von Thun

R. N. Yong
E. T. Selig, Exec. Comm. Contact Member

PUBLICATION SERVICES DEPARTMENT

David Dresia, Director, Publications

Technical and Professional Publications

Richard R. Torrens, Manager

Chuck Wahrhaftig, Chief Copy Editor
Corinne Bernstein, Copy Editor
Walter Friedman, Copy Editor
Warren Meislin, Copy Editor

Richard C. Scheblein, Draftsman

Technical Information Services
Melanie G. Edwards, Manager

PERMISSION TO PHOTOCOPY JOURNAL PAPERS

Permission to photocopy for personal or internal reference beyond th; limits m Sec-
tions 107 and 108 of the U.S. Copyright Law is granted by the American Society of
Civil Engineers for libraries and other users registered with the Copyx:ight Cle.aram':e
Center, 21 Congress Street, Salem, Mass. 01970, provided the appropriate fe; is paid
to the CCC for all articles bearing the CCC code. Requests for special permission or
bulk copying should be addressed to the Manager of Technical and Professional Pub-
lications, American Society of Civil Engineers.

CONTENTS

Probabilistic Model of Progressive Failure of Slopes
by Robin N. Chowdhury and Dimitri A-Grivas .................c.oont 803

Concepts and Instruments for Improved Monitoring
by Pierre Londe .............c.couiiiiiiuinitnnrcatencninanaans 820

Permeability and Consolidation of Normally Consolidated Soils
by A. Mahinda Samarasinghe, Yang H. Huang,
and Vincent P. Drnevich ..........coouiiuernntieennintiieinenennss 835

K,-OCR Relationships in Soil
by Paul W. Mayne and Fred H. Kulhawy . ...............coovvvennen 851

Field Tests of Long-Span Aluminum Culvert
byDavid B. Beal ........c.ooviuuemuiiiiiniiimaiianie e, 873

The Journal of the Geotechnical Engineering Division (ISSI‘{ 0093-6405) is published
monthly by the American Society of Civil Engineers. Publications office is at 345 East
47th Street, New York, N.Y. 10017. Address all ASCE correspondence to the .Edltonal
and General Offices at 345 East 47th Street, New York, NY 10017. Allow‘s1x weeks
for change of address to become effective. Subscription price to members is $16.00.
Nonmember subscriptions available; prices obtainable on request. Second-class postage
paid at New York, N.Y. and at additional mailing offices. GT. A )

POSTMASTER: Send address changes to American Society of Civil Engineers, 345
East 47th Street, New York, NY 10017. % =3

The Society is not responsible for any statement made or opinion expressed in its
publications.



DISCUSSION
Proc. Paper 17113

Universal Compression Index Equation,® by Oswald Rendon-Herrero
(Nov., 1980).

by A. W. N. Al-Khafaji and O. B. Andersland ....................... 893
by Reginald A. Barron .................ccoiiiuiieninnennnennnnenns 894
by A. Sridharan and M. S. Jayadeva ................. ... ..., 895
Response of Buried Structures to Traveling Waves,* by Richard N.
Hwang and John Lysmer (Feb., 1981).
by Reginald A. Barron .............c.ouuuriiiiiueinnenninninaennnn 899
Geotechnical Considerations for Construction in Saudi Arabia,® by
Issa Oweis and John Bowman (Mar., 1981).
by Ian E. Higginbottom and Peter G. Fookes ........................ 900
There Were Giants on the Earth in Those Days,® by George F. Sow-
ers (Apr., 1981).
by N.J. Schnitter ...... %, . 0 . . 0 A o e el 902

‘Qiscussion period closed for this paper. Any other discussion received during this dis-
cussion period will be published in subsequent Journals.

iv

17150 JUNE 1982 GT6

PROBABILISTIC MODEL OF PROGRESSIVE FAILURE
OF SLOPES

By Robin N. Chowdhury,' and Dimitri A-Grivas,> Members, ASCE

AsstRacT: A probabilistic model for the progression of failure in a soil slope
is presented. Failure progression is defined as a spatial and continuous exten-
sion of the failure zone along a potential slip surface in a statistically ho-
mogeneous medium. The local safety margin of any segment of the slip surface
is assumed to follow a normal distribution; cohesive and frictional parameters
of shear strength being considered as independent random variables. The joint
distribution of the safety margin of any two adjacent segments of the slip
surface is assumed to be bivariate normal. After defining the model and out-
lining the rules of transition, expressions for the probability of failure pro-
gression are derived. The model and its formulation are illustrated by a worked
example and the significance of the proposed model is discussed. The sug-
gested approach to the study of progressive failure gives insight into the in-
terdependence of the stability of adjacent elements or sections of a soil mass.
Consequently, it is potentially valuable in clarifying the real behavior of soil
masses and especially slopes.

INTRODUCTION

The progressive character of earth slope failures has been recognized for many
decades (11,30). External observations of stable and failed slopes and other re-
search studies have confirmed the belief of geotechnical engineers that failure
always starts at one location and then spreads progressively to other regions
within a soil mass. Even when there are no external signs of failure, certain
regions with a sloping ground may already be overstressed, and propagation of
failure may have begun.

Factors that contribute to progressive failure of earth slopes include: (1) Non-
uniform stress and strain distributions; (2) strain-softening behavior of soils; (3)
stress release; (4) softening (decrease of shear strength) due to the presence of
fissures and the action of water; (5) the presence of joints and discontinuities;
(6) increase of pore water pressures; (7) minor geological details, e.g., weak
lenses of sand or soft clay, and; (8) environmental effects. Whatever the specific
nature of each influencing factor, to account for the progressive mechanism of

'Reader, Dept. of Civ. Engrg., Univ. of Wollongong, New South Wales, 2500,
Australia.

2Assoc. Prof., Rensselaer Polytechnic Inst., Troy, N.Y. 12181.

Note.—Discussion open until November 1, 1982. To extend the closing date one month,
a written request must be filed with the Manager of Technical and Professional Publi-
cations, ASCE. Manuscript was submitted for review for possible publication on April
3, 1981. This paper is part of the Journal of the Geotechnical Engineering Division, Pro-
ceedings of the American Society of Civil Engineers, ©ASCE, Vol. 108, No. GT6, June,
1982. ISSN 0093-6405/82/0006-0803/$01.00.
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slope failure is important for both fundamental and practical reasons. Time effects
are also important as propagation of failure in space is always accompanied by
progression in time. Various aspects of progressive failure have been explored
in the literature of Terzaghi (30,31), Skempton (27,28,29), Bishop (6,7), Bjer-
rum (8), Peck (22), Seed (25), Wilson (34), and Lo and Lee (18).

DeverminisTic AND ProsasiLisTic MeTHops ofF StABiLITY ANALYSIS

Deterministic methods of slope stability analysis have been widely used in
geotechnical practice. Based on the assumption of limit equilibrium, these meth-
ods assess the safety of slopes through a ‘factor of safety,”’ defined as the ratio
of strength available along a potential failure surface to that required for failure
to occur. With the exception of the Swedish method (simple or ordinary method
of slices), all methods are based on the assumption that the ‘‘overall factor of
safety’’ is the same as the ‘‘local factor of safety’’ at any point along a potential
slip surface (5,19,35). Limit equilibrium methods cannot be used to simulate
construction history nor to study the influence of initial stresses on the slope’s
safety.

The versatile finite element method has been used to provide stresses and de-
formations within soil masses for more than two decades. However, sophisticated
formulations of this method are necessary for its application to geological media.
It should be noted that these formulations require input data that is neither readily
available nor easy to obtain. Also, quantitative interpretation of results neces-
sitates some form of limit equilibrium calculations (10,18). These factors have
ensured not only the survival but also the continued popularity of limit equilib-
rium methods as evidenced by the work of Sarma (24).

The literature is filled with case studies of slopes that have failed, although
their calculated factors of safety were greater than one. Consequently, geotechni-
cal engineers have learned to accept the fact that there is always some probability
of failure regardless of the numerical value of the safety factor obtained by any
conventional formula or method. In recent years, considerable attention has been
given to the identification and description of the uncertainties that exist in soil
properties, pore water pressures, environmental conditions, and the theoretical
formulations of soil behavior. Tools available in the field of reliability analysis
have been introduced to assess the probability of failure of slopes and its de-
pendence on such uncertainties (1,2,16,17,20,36,37). Some progress has also
been made to evaluate the most probable extent or length of the failure surface
(lateral extent of failure) within an embankment (33). Following Vanmarcke’s
novel approach, the most probable length of failure of a natural slope has also
been considered (14). All these studies, however, are concerned with the event
of complete (simultaneous) failure and little attention has been given to failure
progression within a slope.

FormuraTion oF MooEL

Modes of Failure
Several modes of failure initiation and progression are possible, e.g., failure
may start at one extremity of a slip surface and progress towards the other ex-
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tremity; it may start somewhere within the slip surface and propagate in either
direction, i.e., towards the crest or the toe of the slope. The recognition of a
probable failure mode is facilitated by good geological and geotechnical infor-
mation and requires experience as well as engineering judgment. In excavated
slopes, e.g., stress concentrations at the toe may lead to failure propagation up-
wards from the toe (8,13,21); or, in the case of natural slopes, failure may start
at the crest (12,22). For embankments, the likelihood of failure initiating from
the crest has been demonstrated by Romani, et al. (23), and centrifuge tests on
soil models of built-up slopes appear to confirm this (3).

On the basis of the distributions of effective normal and shear stresses, it has
been suggested (6,32) that long-term failures are likely to propagate from the
ends of a slip surface (crest or toe) while short-term, undrained failures of clay
slopes may develop in the interior first and then propagate outwards.

The present model can, in principle, handle all these possibilities. Only one
mode is considered in detail, namely the case where failure initiates at the lower
extremity and propagates upwards along a slip surface. The slices are numbered
consecutively from 1 to n starting from the bottom of a slope (Fig. 1).

Definition of Local Failure
Direct observations of slope failure and inferences drawn from many case rec-

FIG. 1.—Slip Surface within a Slope Potential Sliding Mass Subdivided into a Number
of Segments of Slices

1(5M;)

SM; SM; =(C;- D;)

Fism)

00 SM;

FIG. 2—Normal Distribution of Random Variable
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ords have confirmed the existence of slip surfaces as boundaries of earth masses
subject to sliding. Therefore, it is desirable to retain the concept of a potential
slip surface while modelling progressive failure.

In developing the present model, it is assumed that the soil mass above the
slip surface is subdivided into a number of vertical slices (Fig. 1). The base of
each slice is, thus, a segment of the potential slip surface. Failure may start at
the base of any slice and then extend successively to other slices. In order to
study the probability of failure progressing in this manner, the capacity, C,,
(shearing resistance) and the demand, D,, (shear force) along each segment i
(i =1, ..., n) of the slip surface must be evaluated. The safety margin SM, of
the ith segment is given by the difference between its capacity and demand, i.e.,
SM; = (C; — D)). Failure is defined as the event whereby the safety margin
receives values less than or equal to zero, i.e.

(Failure), = [SM; < 0] = [(C; = D) < 0] ..o, (la)
inwhich C;=cL;+Np; D;=W,sino;, ......................... (1b)

in which ¢ = the cohesion parameter: u(= tan ) the friction parameter; W,
= the weight of the slice; N, = the effective normal stress acting on the base
of the slice; and o; = the inclination of the base to the horizontal.

The probability of local failure (at the base of the ith slice) is then equal to

Pr=PISM;<0] ... . 2)

In order to determine this probability, it is necessary to have previous knowledge
of the probability density function of the safety margin, SM,, or of the random
variables, ¢ and ., on which the safety margin depends. In general, the statistical
values, e.g., mean values and variances, of the shear strength parameters are
evaluated, first, from shear strength data, and then they are substituted in the
appropriate expression of the probability of failure. More attention is given to
this in subsequent paragraphs. Here the safety margin of any slice is assumed
to follow a standard normal distribution (Fig. 2).

Interdependence of Successive Segments

Failure corresponding to drained or long-term conditions is considered here,
necessitating the inclusion of both the cohesive and frictional parameters of shear
strength in the developed expressions. The effective strength parameters, ¢ and
p (= tan ), are introduced as random variables. The soil material is assumed
to be statistically homogeneous, therefore, ¢ and p have the same probability
density function at any point within the medium.

The safety margin of different segments is a function of the same random
variables, ¢ and . Therefore, the safety margins of adjacent slices are not in-
dependent of each other and their joint distribution must be considered. The
assumption of a bivariate normal distribution (Fig. 3) for a pair of adjacent seg-
ments accords with the Central Limit Theorem. Under this assumption, the mar-
ginal distributions belonging to individual segments are also normal. The details
of the joint normal distribution are given in Appendix I.

A normal distribution of the safety margin requires only two statistical param-
eters for its description, viz., the mean value and the variance. The joint normal

GT6 PROGRESSIVE SLOPE FAILURE 807

FIG. 4.—Transition Diagram Shows Proposed Model of Failure Progression

distribution of the safety margins, SM; and SM,,,, of two adjacent slices, i and
i + 1, requires five parameters for its description. These parameters are tyvo
mean values, SM; and SM,, ,; two variances, Sy, and S5, ,; and the correlation
coefficient, rgysy,,,- The latter is defined as the ratio of the' covariance of SM;
and SM,.,, and the product of the two standard deviations, i.e.

cov (SM;, SM,,,) 3)

...................
....................

Tsu; i
SMi-SMi+1 SSMl SSMp,l

A general expression for the covariance of two functions of the same random
variables is given in Appendix I. Using Eq. 19 SM; and SM,,, are

SM;=cL,+ pN,— W;sina; SMiy; = cLiyy + wWNipy = Wi sin gy .o @

the expression for the covariance cov (SM;,SM,.,), entering Eq. 3, becomes



808 JUNE 1982 GT
cov (SMp SM,-+|) = LiL.'-o.lS‘-z"" NiN,-HS,f + (LiNi+l + Li+lNi) covic,m) ..... 5)

in which 2 and Sﬁ are the variances of ¢ and ., respectively, and cov (c,p) is
their covariance. The values of S, S, and cov (c,j) are assumed to be known.
Therefore, the values of SM;, SM,,,, Sgy,,,» and Sg,,., may be calculated. This
is done conveniently by using Rosenblueth’s method, as summarized in Appendix
II. Also cov (SM;,SM,.,) is calculated from Eq. 5.

Progression of Failure

The state of the progression of failure may be identified by the number of slice
along a slip surface to which failure has progressed. Having reached a certain
state, transition of failure may or may not occur to the next state, as shown
schematically in the transition diagram (Fig. 4). An absorbing state is one from
which there is no further transition; e.g., when the last slice of the slip surface
has failed (stage i = n, the number of slices or segments), there is no further
transition, and the probability of being in stage n is equal to one.

From the transition diagram shown in Fig. 4, it is seen that when failure has
reached the ith state, all slices up to slice i have failed. At this state, there are
two possibilities: Failure progression will either terminate at the ith slice, with
probability p;, or will continue to the (i + 1)th state, with probability p, ;..
There is no third option because reversal of failure or healing of the slip surface
is considered impossible in an engineering time scale. The present model assumes
a continuous progression; i.e., failure cannot jump to a slice across one or more
unfailed slices.

The transition probabilities, p;; and p; .1, (i = 1, ..., n), can be represented
in the form of a matrix, defined as the transition matrix P. An element Dij
(,j =1, ... n)of the [n X n] transition matrix provides the transition probability
from state i to state j. From the rules of failure progression described above and
the transition diagram (Fig. 4), one has that all elements in P are zero except
those on the principal diagonal and the diagonal immediately adjacent to its right.
(This is true only for the particular failure mode considered here, i.e., failure
starting from one end and progressing to the other end of the slip surface. If
failure starts somewhere in the middle, there will be more nonzero elements
involving the diagonal adjacent to the principal diagonal and on its left.)

Thus, the transition matrix [P] has the following form:

1 2 3 i i i+1 K n
Ly [rPry, Pizin O s 40 0 e 0T
2 O pyy Pz . 0 0 : 0
3
[P]= . . . . . . : ) . ... (6)
i 6 0 0 . py Py . O
P40 0% 00 BT e  p iy
n L O 0 0 0 0 1_
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The following are two important characteristics of the transition matrix P: (1)
The sum of the elements of each row must be equal to unity, as they represent
probabilities of mutually exclusive and exhaustive events; 1.e.

PutPun =1 i=1,2, .0 e @)

and (2) the last row of the matrix corresponds to the absorbing state and, there-
fore, p,, = landp,, =0,i=1,2...,n— L

Determination of Transition Probabilities .

An element p,;,,, i = 1, 2 ..., n — 1, in the transitions matrix denotes the
probability with which the (i + 1)th slice fails given the ith slice has already
failed. Thus, p,,,, is a conditional probability and can be expressed:

Piiny = Pl(failure),, |(failure),] ...........oooiiiiii 8)

Introducing the definitions of failure, given by Eq. 1, the aforementioned expres-
sions become

Pret = PISM, S O|SM=0] ..o ..l i ©)

The complement p, ; of p; ., i.€., the probability with which failure progres-
sion terminates at the ith slice, is equal to

Pii=PISM >0 SM,<0] ..oonniiiii e (10)

so that p;, + p,;+; = 1. Introducing the definition of the conditional probability
into the RHS of Eq. 9, p;;,, may be written:

_ P((SM;<)) and (SM,;<0)]
Piiv1 = PISM, = 0]
i.e., the conditional probability is replaced by the ratio of the ;?rpbabilit)f of the
two slices, i and i + 1, failing simultaneously over the probability of failure of

the ith slice. S
As SM., i =1, 2, ..., n, is normally distributed and the joint distribution of
i ’ ’ ] »

SM, and SM,,, is bivariate normal, one has that the denominator of Eq. 11 is
equal to

0
P[SM, < 0] = J Fan G dx = Fgq(0) +eveveniniiiiaianiaen (12)

in which fg,, and Fg,, are the normal and cumulative normal distributions, re-

g . . 0]
spectively. The numerator of Eq. 11 is equal to the cumulative bivariate normal
distribution evaluated at zero; i.e.

0 0
P[(SM;<0) and (SM,.,=<0)] =j j Ssmismiar (x,y) dx dy

—xd —x

= oo 0,0), ¢ v neeon e essen e s e da e e (13)

in which x and y = dummy variables of integration. o e
The analytical expression for the bivariate normal distribution Ssmismis, 1 given
in Appendix I and is shown schematically in Fig. 3.
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TABLE 1.—Statistical Values of Strength Parameters

Statistical Strength Parameters
parameter (= tan ¢) c
(1) (2) (3)
Mean value i =078 (¢ = 38) ¢ = 500 psf (23.94 kN/m”’
Coefficient of pef @3 /m)
variation V. = 10% V. = 50%

Note: Correlation coefficient r,, = —0.20.

The model of progressive failure presented above is illustrated in the following
example.

Ilustrative Example.—In Fig. 5 an earth slope, having a height H = 25 ft
(?.62 rp) and an angle B = 45°, is shown. The slope mass is subdivided into
nine slices, indicating nine states of progression during failure. The unit weight
of the material is equal to y = 120 pcf (18.84 kN/m®), while the statistical values
of the strength parameters are given in Table 1. .

First, the most conventionally critical failure surface is determined. This is
achieved using the computer program STABL (9,26). From among the 10 most

0 IN MOST CRITICAL OF SURFACES
GENERATED MMMUM FACTOR OF
SAFETY « 243

AB= 4412 1£{1345m)
OM=3823 f1{11:65m]

3
8
I IS

1m=3-28#
e 1f1=03048m

o 1000 2000 3000 000 5000 000 7000 8000
X AXIS [1t]

FIG. 5.—Trial Slip Surfaces for Given Problem—Search for Most Critical Surface

251t (762m)

11t =0-3048m

FIG. 6.—Example Problem with Most Critical Slip Surface and Segments Considered
for Failure Progression
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critical failure surfaces, shown in Fig. 5, curve AB corresponds to the smallest
value of the factor of safety FS, which is equal to 2.43.

It is assumed that failure will progress along surface AB (Fig. 6). This is
followed by calculations of the shear and normal forces along the base of each
slice which enter the expressions for the safety margin, Eq. 1. The mean values
and standard deviation of the safety margin, SM;, of each slice and the covariance
and correlation coefficient of the safety margins of successive slices are listed
in Table 2. These results were determined using the methods described in Ap-
pendices I and II. The numerical values of the probability of failure of each slice
are listed in Table 3. These were determined using tables of the standard normal
variate. Finally, using Eqs. 11-13, the transition probabilities p; ;. of progressive
failure were determined. The resulting transition probability matrix is

1 2 3 4 S 6 7 8 9

—

1[70.87 0.13 0 0 0 0 0 0 0
2 0 081 019 O 0 o0 0 0 0
3 0 0 064 036 0 0 0 0 0
P1= 4 0 0 0 049 051 O 0 0 0 ... (14)
5 0 0 0 0 031 069 O 0 0
6 0 0 0 0 0 026 074 0 0
7 0 0 0 0 0 0 0.19 081 O
8 0 0 0 0 0 O 0 0.65 0.35
9L 0 0 0 0 0 0 0 0 1
Anavvsis

Model—Its Basis and Attributes.—The probabilistic model presented in this
paper deals essentially with the progression of failure in space. It is based on
the fact that, in practice, a probability of local failure always exists. Various
factors that influence failure initiation have already been outlined in the intro-
duction, e.g., stress concentration at the toe of a ‘‘safe’’ slope may initiate fail-
ure. Similarly, tension cracks may enhance the tendency for failure initiation at
the crest of a slope. Almost three decades back, Bishop (4) noted that local
overstress could occur in so-called ‘‘safe’” embankments. In a typical case, he
found that local failure occurred even when the calculated overall safety factor,
F,, was as high as 1.8. Similar results have been noted in numerous stress-de-
formation studies based on the versatile finite element method (18,35). The actual
magnitude of F, required to prevent local overstress anywhere in a slope depends
on several factors, such as the type of slope, the soil properties, the sequence
and history of construction, and environmental effects.

Thus, regardless of the calculated local safety margin, SM,, of the first seg-
ment, e.g., Eq. 1, the “‘real’’ local safety factor, Fi,,, may be very low because
of these factors, and failure may initiate, i.e., Fiouq << (Ci/Dy). It is useful to
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TABLE 2.—Statistical Values of Local Safety Margins

Standard Correlation
Slice i deviation, Covariance, coefficient,
number Mean, SM, Ssats Cov (SM,,SM,,,) r E
(1 ) (2) (3) 4 SMi,SMi+1
(4) (5)
1 1.10 x 10° 4.47 x 10*
1.87 x 10° 0.90
2 1.43 x 10° 4.63 x 10*
1.91 x 10° 0.84
3 1.64 x 10° 4.91 x 10*
2.26 x 10° 0.81
4 1.79 x 10° 5.70 x 10*
2.61 x 10° 0.79
5 1.55 x 10° 5.80 x 10*
2.63 x 10° 0.78
6 1.16 x 10° 5.83 x 10*
3.16 x 10° 0.80
7 1.00 x 10° 6.81 x 10*
3.98 x 10° 0.85
8 0.758 x 10° 6.90 x 10*
5.87 x 10° 0.92
9 1.51 x 10° 9.22 x 10*

Note: The safet){ margin of any slice has been expressed as a moment rather than a
force; thus, Eq. 4 is multiplied by radius, R, of circular slip surface.

designafe the state of no local failure as state O (zero), the probability of this
state _b_elng mamtame.d as pog, and the probability of failure initiation as p,,, i.e.,
transm(?n from no-failure state to the state whereby the first segment has failed.
Accordingly, one may write

Pt =PFloa =0l Poo=1—Por vvvrreeneiiniiaaaan .. (15)

Since F,, .is the actual local safety factor, likely to be much smaller than the
calculated ratio of local capacity and local demand, it is obvious that the prob-

ability of failure initiation is much greater than that of local failure based on a
conventional approach, i.e.

Fiow << (C, — D)) .. po, >>p;, >>P[(C, — D,) < 0]

Having recognized and accepted that failure can initiate, in so-called *‘safe’’
slopes, the need for a suitable basis for assessing the progression of failure be-
comes absolutely clear. The model presented in this paper enables the extension
or propagation of failure to be evaluated logically on a probabilistic basis. What-
ever the current state, the probability of continuation in the same state or ex-
t@nsnfm to the next state can be determined. The fact that this is done by con-
sidering two adjacent segments at a time acknowledges the interdependence of
elpments in a soil mass. The assumption that failure can not jump across safe
slices appears justified intuitively in light of experience and engineering judg-
ment. It is interesting that these features imply the type of one-step memory used
in the well-known Markov chain model. However, the model presented herein
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should not be confused with a Markov one. In the latter, transitions occur in
time, and consecutive states are those occurring at successive time steps.

The proposed model is not dependent on a particular definition of the local
safety margin. The Fellenius assumption was used in Eq. 1 for simplicity. Also,
as pointed out earlier, other limit equilibrium methods assume local safety factors
to be the same as the overall safety factor. In principle, any suitable definition
of local safety margin may be used, e.g., one based on the computed stress field
or one based on the level of strains or deformation reached at different locations.
Almost all previous work on probabilistic study of slope stability is based on,
and directly linked with, deterministic models, such as limit equilibrium, and
is, therefore, subject to some of their weaknesses. In the approach presented
herein, use of such models is optional. Moreover, failure progression can be
studied without considering any specific mechanism of strength decrease. It is
obvious that strain-softening behavior of soils enhances the tendency for pro-
gressive failure. The inclusion of strain-softening behavior in the proposed model
is, however, a matter of detail only. Similarly, pore water pressure, a significant
variable in slope stability and progressive failure, may be included as an inde-
pendent random variable without altering the basic simplicity of the formulation.

It may be noted that the assumption of a statistically homogeneous soil mass
has been made in this paper. This implies, for instance, that the mean value and
variance of each strength parameter are the same everywhere in the soil mass.
While, in principle, one could consider the variability of shear strength along
the slip surface, in practice it is difficult to secure a sufficient amount of lab-
oratory or field data, or both, necessary to quantify this variability on a statistical
basis. Thus, the necessity, the present work was based on the assumption that
the probability density function, mean value, and standard deviation of strength
were the same anywhere within the medium.

Results.—Table 2 shows a consistently positive and strong correlation between
the safety margins of adjacent slices. In this example, the magnitude of the coef-
ficients of correlation (of safety margins of adjacent slices) are within a relatively
narrow range, which is to be expected considering the nature of a statistically
homogeneous medium. Strong and positive correlation implies physical depen-
dence of the stability of adjacent segments of a soil mass on each other. There-
fore, the results are consistent with intuitive judgment. The fact that the prob-

TABLE 3.—Probability of Local Failure

Slice Standard normal Probability of failure,
number variate, v pi = PISM; = 0]

(1 (2) (3)
1 —2.46 6.95 x 107*
2 -3.09 1.00 x 1072
3 -3.34 4.i9 x 107*
4 -3.14 8.45 x 107
5 -2.67 3.79 x 107®
6 -1.99 2.33 x 1072
7 —1.47 7.08 x 1072
8 -1.10 1.36 x 107
9 -1.64 4.5 x 1072
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abilities of failure p, shown in Table 3 vary significantly over the slices might
have led to the conclusion that correlation between slices would vary in the same
way. However, Tables 2 and 3 show that this is not so.

Turning now to the transition probability matrix, i.e., Eq. 14, the results are
noteworthy. At the beginning, the probability of remaining in the initial state is
high in comparison to the probability of progression to the next stage. In suc-
cessive stages, the probabilities of failure progression increase steadily until the
penultimate stage. The fact that there is again drop in the magnitude of the prob-
ability in this one stage may be a reflection of the geometry of the particular slip
surface. One can draw the general conclusion that the probability of failure pro-

gression will be influenced by the physical nature of the problem within a given
soil medium.

Summary anD CONCLUSIONS

The primary objective of the present study were to (1) Demonstrate that prob-
abilistic analysis of progressive failure is feasible; and (2) to develop an appro-
priate model for such an analysis with accompanying formulation. Failure pro-
gression was defined suitably as a spatial and continuous extension of the failure
zone along a potential slip surface. A statistically homogeneous medium was
considered, bearing in mind that sufficient data is usually not available for the
determination of variations of statistical parameters along a slip surface. More-
over, only two random variables were introduced in the formulation at this stage,
although the inclusion of other random variables is quite feasible. A normal
distribution of the safety margin of each slice was considered appropriate. More-
over, in accordance with'the Central Limit Theorem, the joint normal distribution
of two adjacent slices was assumed to be bivariate normal. A suitable procedure
was outlined for determining the five statistical parameters required for'the de-
scription of this bivariate normal distribution. Expressions for the probability of
failure progression (transition probabilities) were derived after specifying the
rules of the model, namely: (1) One-step memory, i.e., interdependence of ad-
jacent slices; (2) failure can not jump over unfailed slices; and (3) no healing
of the slip surface can occur in an engineering time scale. The model and its
formulation were then illustrated by a worked numerical example. The attributes
and significance of the model and the significance of the results were then
examined.

The following conclusions can be drawn from the present study:

1. A probabilistic formulation of progressive failure is feasible.

2. The proposed model gives insight into the interdependence of the stability
of adjacent elements in a soil mass. Consequently, it is potentially valuable in
clarifying the real behavior of soil masses, especially slopes.

3. In practice, there is always a probability of local failure. The proposed
model provides a powerful tool for studying the extension or propagation of such
failure on a probabilistic basis.

4. The model can be of practical benefit in most situations, except, if it can
be demonstrated in a given case that the actual probability of local failure oc-
curring anywhere in a slope is very low indeed.
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5. In a given example, it was shown that the probability of failure progre§sion
increases consistently in eight stages or states from 0. 1.3—.0.81. Thet coefficients
of correlation of adjacent slices were all high and within a relatively narrow

range. .
6. The results of any study based on the proposed model must be considere
in light of the physical nature of the problem and with an awareness of significant

factors influencing stability. ; N

7. The model is not dependent on conventional deterministic concept of a
safety margin, and the use of any such concepts is optional. Extensions of the
model along significant directions are feasible.

ACKNOWLEDGMENTS

is paper is part of a comprehensive research programme on Geotechnical
St;)l;llit;’ alr’:i Relli)ability can‘iedpout under the direction of Rf)bin N. Chowdhury
at the University of Wollongong. The support of the Australian Research Grants
Committee is gratefully acknowledged. The authors also gratefully acknowledges
Rensselaer Polytechnic Institute and the University .of Wollongopg for encour-
agement and support of cooperative research activities by the writers.

Avrpenoix |

Covariance of Safety Margins of Adjacent Segments: !
In general, if there are two functions, R and S, of different variables (x,, x,,

X3 ... X,) €.8.
R=R(y, Xp Xy ..o %)y S =800, X X3 000 Xy evnenenivirneneians amn

NEAYEN
then Cov (RS) = ), (5;) (3;) Vixl

i=1 i

oR\ [8S oR as)] (18)
tezd [ (REnS —Jl—=)|cC ) I G o L Ry
i 2 [(axi) (3xj)+ (axj) (3x,- e xj)

i<j

From Eq. 4 in the text and Eq. 18

aSM;\ (3SMin1 @ aSM,-) (aSM,.H)S2
Cov (M, M) = \—— I\ ) S T\ 50 ) \ o )+

+ (aSM‘) (aSM"“) + (aSM"> (aSM”‘)] COV (Cy1) wvvvrnrnnnnnn (19)
ac oW T ac

It is found that

. M, aSM;
osSM; _ L, aSM;v, _ L aSM; _ N, —EL=Ny o 20)
dc Y ac o o

From Eqs. 19 and 20, the final expression shown as Eq. 5 in the text is obtained.
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Bivariate Normal Distribution

The bivariate normal probability density function for random variables SM,
SM,,, may be written: ”

1
2 % Ssat; Ssuin \/1 =P

1 SM, — SM,\* SM, - SM,\ (SM,,, — 5M,
°XP{—2(1—F)[( Son, )_2’( )( ; '1)

SSMi S, SMi+1

+ (SMi+1 - miﬂ)z
_—_Ssum ......................................... 21

in which r denotes rg,, SM,,,, the correlation coefficient, and

.f:S‘Mi,SMm (SM,, SM;,,) =

—x <SM; <o, —x <SMy <% Sqp >0, Sgy, >0 -lsr<1;

~x <SM, < ®; —x <SM,,, <x

................................ 22)
and P[x, =SM;<x, and y, <SM,, <y,]
Y2 2
= f J‘ ASM;, SM,\, SM;, SM;..., Sspi» Ssagers DASM;dSM,y ... .. ... (23)
p4l X1

Appenpix I

Rosenblueth’s Method
The safety margin for the ith slice is a function of two random variables

SM; = SM; (c,p)

............................................... (24)
To use Rosenblueth’s method, the Egs. 25-27 are necessary:
s . 1+r 1-r

P,,=P__= T P_=P., = A e (25)
SM., =SM;C+S,h+S5); SM,_ =SM,E+S5,i-S,);

SM; , =SM; (& =S, p+8); SM;__=SM;(E-S.,f=5) ......... (26)
E[SM]1=P, . (SM, )"+ P,_(SM,,_)"

P SM )+ P (S L i e N s L e L T @7
Bydefinition SM;=E[SM] ..............ccoiviiuenneoin.. (28)
Var (SM) = E[SM?] — SM)? ..o i (29)
Sag = [Var (SM))' 1.0, L wih L U5 0 M5 ST U e e (30)

Values of ¢, i, S, and S, that appear in Eq. 26 are given and are common for
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all SM, values. The correlation coefficient  (i.e., r,,) is also known. A simple
program was developed to use Rosenblueth’s method on a hand calculator.
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Appenpix IV.—NotaTion

The following symbols are used in this paper:

C, = capacity of slice i;
cohesion;
mean of cohesion and its standard deviation;
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covariance;

demand of slice i;

local factor of safety;

probability of an event;

probability of failure progression from state i to state (i + 1);
radius of slip surface;

correlation coefficient;

safety margin of slice i;

mean of safety margin and its standard deviation;
coefficient of variation;

weight of slice i;

inclination of the base of slice i to the horizontal;
tan ¢ = friction parameter; and

angle of internal friction.



