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KEY WORDS: Clays; Construction; Foundations; Heaving; Pile foundations;
Settlement (structural); Soil mechanics

ABSTRACT: Vertical and lateral displacements of soil and driven piles occur during pile driving in
certain types of soils. The occurrence of vertical heave often significantly adds to the cost of a pile
foundation. The undetected occurrence of heave of piles and foundation soils can lead to ultimate
failure of a pile foundation. A case history study of 13 pile foundations was undertaken.
Mechanisms of soil and pile displacements are proposed and the effects of various factors on the
displacement phenomena are analyzed. The principal factors which affect the mode and magnitude
of soil and pile displacement are: (1) The characteristics of the soil into which the piles are driven;
(2) the characteristics of the piles themselves; (3) the sequence of pile driving; and (4) the overall
geometry of the pile foundation. An approximate method of prediction of the magnitude of soil and
pile heave is presented.

REFERENCE: Hagerty, Joseph D., and Peck, Ralph B., “Heave and Lateral Movements Due to
Pile Driving,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No.
SM11, Proc. Paper 8497, November, 1971, pp. 1513-1532

8510 SCALE AND BOUNDARY EFFECTS IN FOUNDATION ANALYSIS

KEY WORDS: Bearing capacity; Boundary conditions; Coefficients; Computation;
Failure; Foundations; Models; Plasticity; Sands; Scale effect; Soil mechanics; Stability e

ABSTRACT: The bearing capacity of rough strip footings on sand is analyzed using numerical
integration of the plasticity equations. The influence of different boundary conditions below the
footing is studied for the zero surcharge case, and bearing capacity coefficients are calculated for
various assumed settlements at failure. A pressure dependent solution is described which permits
calculation of the variation of ¢ with stress level in the failure zone. The results are compared with
existing trial failure surface solutions and with experimental values. It is concluded that good
agreement can be obtained between theoretical results which assume a trapped elastic wedge
beneath the footing, and model results related to average ¢-values from triaxial tests in the normal
range of cell pressures. The lack of agreement with field results and the computed variation of ¢ in
the failure zone imply that this relationship is empirical. A procedure is outlined for relating
bearing capacity of a given-sized footing to the initial density of a sand using ¢ verses pressure
results from plane strain shear tests on sand at the same density.

REFERENCE: Graham, James, and Stuart, John Gordon, “Scale and Boundary Effects in
Foundation Analysis,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97,
No. SM11, Proc. Paper 8510, November, 1971, pp. 1533-1548

8522 ANALYSIS OF LOAD-BEARING FILLS OVER SOFT SUBSOILS

KEY WORDS: Bearing capacity; Bearing values; Cohesionless soils; Cohesive soils;
Deformation modulus; Design criteria; Elastic theory; Fills; Footings; Foundation hopee e ——1
bearing tests; Poisson ratio; Settlement (structural); Shear failure; Soil mechanics;

Stress distribution; Stress-strain curves; Subsoil

ABSTRACT: The protection afforded soft subsoils by the stress-distributing characteristics of load-
bearing fills is examined. Using recently developed finite element techniques of analysis, including
nonlinear soil properties, a complete stress-deformation solution of a fill-subsoil system is obtained.
The proposed method is first examined by applying it to three problems, one hypothetical and two
actual load test case histories. The method is then used to study the stress distributing
characteristics of granular fills overlying clay subsoils. As would be anticipated, the stiffer the fill
relative to the foundation soil, the greater the reduction in stress transmitted to the underlying soil.
Although the complexity of the load-bearing fill problem is such that simple charts cannot be
prepared to indicate fill-subsoil interface stresses for different soil conditions and geometries, it is
shown that approximate values of maximum vertical and shear stress can be obtained by use of an
easily applied formula for modulus characterization and a simple geometrical function.

REFERENCE: Mitchell, James K., and Gardner, William S., “Analysis of Load-Bearing Fills over
Soft Subsoils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No.
SM11, Proc. Paper 8522, November, 1971, pp. 1549-1571
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APPROXIMATE SOLUTION TO FLOW PROBLEM UNDER DAMS

By Demetrius G. Christoulas,’ M. ASCE

INTRODUC TION

For a hydraulic structure resting on ahomogeneous and isotropic pervious
stratum, the two-dimensional flow problem can be considered as one of con-
formal representation. In 1922, Pavlovsky proposed the use of the Christoffel-
Schwarz transformation for the solution of this problem in the following way
(4,8). Flow region z =x + iy is represented on the plane of complex potential
w = ¢ + i¥ by rectangle ABDC. Assuming that the contour of the flow region
is composed of horizontal and vertical straight-line segments, the conformal
mapping of polygons w and z is achieved on half plane ¢ through the following
Christoffel-Schwarz transformations:

w=Mf dg +N=MF(,m) +N ..... LR (1)
VO =-a - m*{7)

z-_—M'/ ln(g-ai)
g-LvrTnveTe

in which 1I denotes the product. Function F (¢, m) is an elliptic integral of the
first kind and it can be computed easily with the use of tables. The second
function is generally a hyperelliptic integraland parameters m, a;, and c; are
not known. Thus the solution can be achieved only for simple flow regions.
Due to the difficulty of an exact solution of the problem, Pavlovsky pro-
posed the well-known method of fragments. The funddmental assumption of
this method is that the vertical lines through the ends of the cut-offs are
equipotential lines. Thus flow region z and its image on plane w are divided
into simple orthogonal fragments. The Christoffel-Schwarz transformation
can, therefore, be applied, and it easily produces the solution to the problem
Note.—Discussion open until April 1, 1972, To extend the closing date one month, a
written request must be filed with the Executive Director, ASCE. This paper is part of
the copyrighted Journal of the Soil Mechanics and Foundations Division, Proceedings
of the American Society of Civil Engineers, Vol. 94, No. SM11, November, 1971, Manu-

script was submitted for review for possible publication on March 22, 1971,
1 Hydraulic Consulting Engr., Athens, Greece.
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providing that the most complex functions resulting are elliptic integrals of
the first kind. Pavlovsky’s assumption is more exact as the ratios, S/T,in-
crease, in which S represents the depth of the cut-offs and T, the depth of the
pervious stratum.

Besides Pavlovsky’s method, the approximate methods proposed by Khosla
(6), Melechenko- Filchakov (1,8), and Chugaev (9) are applied. These methods
do not aim at a complete solution of the flow problem, but at the computation
of the proper quantities necessary inthedesignof hydraulic structures. These
methods, and especially Chugaev’s, present a simple and rapid application.

The present work introduces a new approximate analytical method which
is essentially an improvement of Pavlovsky’s method.

FUNDAMENTAL ASSUMPTION OF PROPOSED METHOD

It is assumed that the contour of the flow region is composed of horizontal
and vertical straight-line segments [Fig. 1(a)]. The number of cut-offs is not

c 8
7.2//// T 7 777 Yol 57'/ 4
(a)
A (< %Y Qg }w o
T 3 5
lu
Ml
|
Q | @ n @
I
J, ! ¢ A 8-50bE
C |eAODL|b, by b ..1'/,,1 -1 .1 «/m
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(b) (©

FIG. 1.—FLOW REGION AND ITS IMAGES ONTO PLANES W AND £
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restricted. Herein, the problem is handled in the same way as did Pavlovsky,
i.e., the flow region is divided into simple orthogonal fragments by the ver-
tical lines through the ends of the cut-offs. However, these lines, AB(A, B,,
A, B, etc), are not equipotential, as Pavlovsky had assumed them to be, and,
therefore, their images on' plane w are not straight lines but curvilinear seg-
ments ab [Fig. 1(b)]. An effort has been made to find a family of curves ap-
proaching, as much as possible, curves ab. As representation w - z is
conformal, slope angle a of the streamline passing from point M is equal to
angle a' between image curve ab and the ¥ axis, at corresponding point M'. If
point M moves from A to B, slope angle a varies in a typical way. Indeed,
this angle vanishes at the vicinity of point A, increases quickly to a maximum
value, and vanishes at point B. Also, angle a assumes limited values. Conse-
quently, the same holds true for angle a'. This angle varies in the described
typical way and assumes limited values. It is further observed that the ratio
|A¢]/@ assumeslimitedvalues too. On the basis of these observations it can be
assumed that the shape of curves ab isdetermined only by parameters A¢ and
@, and thatall the special characteristics of the flow region have no other ef-

——= ¥ AY
3 - L L
“ A
4
®='KH Iy L2 d 00/ ®=°
t A p=0 | X B X
I
I
T |
L |
A $=-0Q X' |8’
77 7 777 777 7

FIG. 2.—BASIC FLOW REGION

fect on the shape of these curves. Thus a special simple flow region can be
used and the corresponding family of curves ab can be generally applied. Such
a suitable simple flow region is shown in Fig. 2. The simplicity of this region
facilitates computation. Moreover, this region is the limit case of a dam with
small depth cut-offs, i.e., the case in which abetter approximationto the real
shape of the curves ab is needed, because of the great A¢. In the case of a
dam with great depth cut-offs any assumption about the shape of curves ab
will alwaysbe satisfactory, because of the small A¢. The exact solution of the
problem in Fig. 2 is given (8) by

1+msn(w+K>)

2 =x+1 =Zln H
Y m 1 2Kw
- m sn W+K e s s e e s e PO TSP, .(3)

_ K'(m) _ L
" 2 ™t Rhar



1576 November, 1971 sSM11

For a given flow region with cut-offs [Fig. 1(a)] characterized by total head H
and seepage discharge @, there is always a suitable flow region in Fig. 2
characterized by the same quantities # and @. This flow region will hereafter
be called the basic flow region. For a vertical segment XX' moving from AA'
to BB' (Fig. 2), the quotient A¢/Q = (¢x - ¢x,)/Q varies continuously between

minimum value (¢ A - ¢ ,)/Q and maximum (¢ B - ¢B,)/Q. It is evident that
g (¢ A-0 \=(¢B - ¢B,‘) > 0. The maximum potential difference |¢ 4 - ¢B|

in Fig. l(a? is observed at the upstream or the downstream cut-off. As a rule,
this maximum difference will be smaller than the maximum difference ¢p -
¢B, in the basic flow region.

The preceding observations lead to the following assumption which is the
fundamental assumption of the proposed method. For a given flow region and
for every cut-off of this region, there is a suitable vertical cut XX' of the
basic flow region whose image onto plane w coincides with image ab of the

| Wa
:—.A- C=A-
e Coz - ——fe—— Caz4 __.| i)
Cw A Ay A, As B Do

® ® €

B4 Ba
t=-C1 a1’..‘:_"1% ___.l

FIG. 3.—IMAGE OF FLOW REGION (1 - o) ONTO PLANE W = W1 +1 Wa

Ce Ba Do

vertical line through the end of the cut-off. For a given segment XX', x =
constant. Putting

1+msn(%‘£+1{>
Ww) = W,(¢, ) + iW,(¢,¥) = In K e AR (3)
: 1-msn(—-—-+K>

2Kw

KH
along segment XX', W,(¢, ¥) = constant. Thus according to the preceding as~
sumption, the real part of the complex function W(w) is constant along each
vertical line through the ends of the cut-offs.

As the function z = (T/n) W(w) givesthe solution to the flow problem in the
basic flow region, the following important properties of this function ensue:

1. Along the upper surfaces of the pervious stratum AC and BD [Fig. 1(a)]
the potential ¢ = - kH and ¢ = 0, respectively; consequently W,(¢, ¥) = 0.

sSM11 FLOW PROBLEM 1577

2. Along the underground contour of the hydraulic structure the stream-
function ¥ = 0; consequently W, = 0.

3. Along the impervious surface CD the streamfunction ¥ = - @; conse-
quently W, = - 7.

Because W, (¢, ¥) = constant along each vertical line through the ends of the
cut-offs, the orthogonal fragments 1, 2, 3, etc. of the flow region are trans-
formed into the orthogonal fragments 1', 2', 3', etc. on the plane W = W, +
iW, (Fig. 3).

1t is observed that what was achieved by Pavlovsky’s assumption in plane
w is also achieved herein in plane W. The solution procedure is now evident.
The Christoffel-Schwarz transformation can be applied to each of the simple
fragments of the flow region as well as to the corresponding simple frag-
ments of plane W, to give functions z(¢) and W(g). Functions z(¢), W(¢)and
function W(w) give the solution to the problem (6).

Now .the aforementioned procedure will be applied and a series of equa-
tions is derived which gives the solution to the problem.

MATHEMATICAL TRANSFORMATIONS

The three types of fragments in Fig. 4 to be studied are the: upstream
fragment [Fig. 4(a)]; intermediate fragments [Fig. (b)] and downstream frag-
ment [Fig. 4(c)].

Upstream Fragment.—The conformal mapping z - ¢ is described by the
following Christoffel-Schwarz equation:

z =M/i-—+N=-Mi SInTL £ FN o e e vees s (5)
\/ gz - I

For point C,, £ = + 1, z = 0 and, therefore, N = #{Mn)/2. For point B,, { =

- 1,z = {T and, therefore, M = T/n. Consequently

LRy SNERT .
z = znsln g+12

from which ¢ = cosh %

For point A,, £ = - a,,z = T - S) and for point Ay, £ =- @, 2 = - L +1iT.
Therefore

a°=cosh1TI—‘
S
a,=cosT

Now considering conformal mapping W - ¢

+ N'

W=M'f di

vy(T - I$(§+a1)
1[{'1*‘\[{"'“1
vE-1-+Vi+a

=M ln L N oot (akoir ot oo tomener og sibl epartiianese ozt sh(B)
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a) Upstream fragment
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——
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A
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p) Intermediate fragments

p ey

NE Clw,
;F B T B:ls, AB B A
1 A A |T L
1

} ,I @ ©

C [ X fo c’ B AC'|C AB E

|-<———L '1/)\’“' -1 ¢% *a &“/A

¢) Downstream fragment
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f\i}% %.-—FRAGMENTS OF FLOW REGION AND THEIR IMAGES ONTO PLANES W

For point A, £ = - a;, W = C, and, therefore, N' = C,. Forpoint C,, { = + 1,
W = C, - im and, therefore, M' = - 1. Consequently

W=1n\f§'1'\/§+a1
VE-T1+VE +a

R e e ()

For point A,, ¢ = a,, W = C, and, therefore

C,- C=mY%t1+Va-a

va, + 1 - Va, - a,

Intermediate Fragments.—The conformal mapping z - { is described by
the following Christoffel-Schwarz equation:

sM 11 FLOW PROBLEM 1579

z=Mf dg A N=MFEN +N ceenen.. (1D
TN =T

For point C,z = 0, ¢ = 1, F(¢,2) = K. Forpoint C',z = L, ¢ = - 1, F(g,2)
= - K. For point B, z = iT, £ = 1/A, F(¢,A) = K - iK'. Thus, the following
equations are obtained:

e s L
z--ﬁF(g,A)+——2-. ..... ..-....................(12)

%=§““”““““““”””“”“”“““4m

With the use of tables, Eq. 13 gives parameter X and the complete elliptic in-
tegrals K and K'. Solving Eq. 42 for {:

g=sn[(KTzK>x] ..... £l gl g

For pointA;z = iT - §), ¢ = a. Forpoint A';z = L + iT - §), ¢ = - a'.
Eq. 14 gives

S
a == dn <K' =, A')
A & .. (15)
sl

=1 S
a'—hdn< T,)\)

Considering conformal mapping W - {:
e 7 ] dg
YT - alf +a g - IZ +1)

is obtained. Now function # is introduced by means of substitution:

Nttt (16)

1 +a')lg-a = 2@ + a'
pary ER R Ei o o B

sn (u,n) =

. * 2M' e 2M'
Flnallyw-m du+N—mu+N' -.-(18)
is obtained. For point A, £ = a, snu = 0, u = 0 W = C. For point A', ¢ =
-a',snu =1u = Kn), W = C'. Therefore

C'-C
W=C+—m5—u..................... ..... vee.. (19)

For point C', ¢ =- 1, snu = 1/n, u = Kn) - iK'(n), W = C' - ir and,
therefore

K(n) L aaLie(20)

) e o s s s e s e s s e s e s s e s s s e oo .o

Downstream Fragment.—The following equations are obtained, corre-
sponding to the upstream strip:

cCt-C-=n1

T2

¢t = - cosh
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a,,=cos"TS
a,,+1=cosh£TI—‘

WA= in,t e Sl VIEEetay O ol S i P e (93)
\[;"'I'\[g'an
AN~ InfY Tt Lo Yau Sidal o T B S e e 2(24)

Vaps, + 1 - Vagy, - ay

At point A,,, (Fig. 4) w = 0 and, therefore, sn [(2Kw)/(kH) +K] = sn K = 1.
Consequently C,4, = In [(1 + m)/(1 - m)].

At point A, w = - kH and, therefore, sn {[(2Kw)/(xH)] + K} = sn (- K) - 1.
Consequently C, = In [(1 - m)/(1 + m)].

Putting A = Z(C; - C;—,), A =Cpy, - Co =2 1n [(1 + m)/(1 - m)] is
obtained. Thus

m=tanh‘4i S S PRI forp Coin - s s s 2= A E17)

APPLICATION PROCEDURE
The proposed method is, therefore, applied in the following manner:

1. Eq. 7 is applied and parameters a, and @, of the upstream fragment are
computed. Then Eq. 10 gives difference C, - C,.

2. Eq. 13 is applied for each intermediate fragment and parameter ) as
well as the complete elliptic integrals K(A), K'(A) are computed. Then Eqs.
15 and 17 give the parameters a, a', n, and the complete elliptic integrals
K(n), K'(n) are obtained. Finally, the difference C' - C is computed for each
intermediate fragment by means of Eq. 20,

3. Eq. 22 is applied for the downstream fragment and the parameters a,,
ay 4+, are computed. Then Eq. 24 gives the difference C,4, - C,.

4, The quantities C; - C;., are added and the sum A = C, - C, + Cp4, -
Cy + Z(C' - C) = Cy4, - C, is obtained. It has been shown that Cy4, = -
C, = A/2. Therefore, knowing the sum A and the differences C; - Cj—,, the
quantities C,, C,, . . . C,4, are immediately computed.

5. Eq. m = tanh (4/4) gives the modulus », so the complete elliptic in-
tegrals K = K(m), K' = K'(m) are obtained from tables. Consequently the

(2Kw )

1+ m sn —KF + K

function W = In > is absolutely defined. This function
1 -m sn (TH—' + Ifj

results in

KH 1 1 w
w=-—2—[1-RF(ztanh -Z—,m)].................. (26)
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therefore, parameters G, C,, ... G+, are known and the functions W(E)
(Egs. 9, 19 and 23) are also defined. Consequently, the function (Eq. 26) with
functions W(¢) and z(£) (Eqs. 6, 14 and 21) gives the solution of the problem,
i.e., the complex potential w = ¢ + #¥ at every point of the flow region.

The preceding computations are carried out with the use of tables (2,3,5,
7) of elliptic integrals K, K', F(f{, m) and of elliptic functions sn (u,m),
dan (u, m).

The computation is difficult at interior points of the flow region because of
the complex numbers operation. In this case quantities, ¢, ¥ at the boundary
points of the flow region may be computed, then a graphical flow net can eas-
ily be drawn, to give ¢, ¥ at any interior point.

APPLICATION OF PROPOSED METHOD IN DESIGN PROBLEMS

The complete solution of the flow problem is not necessary for design pur-
poses. The designer needs to know seepage discharge @, pressures p on the
underground contour of the hydraulic structures, and exit gradient Ig, i.e.,
the hydraulic gradient at the toe of the structures. Quantities @, I, and p are
computed by means of the proposed method as follows. It is assumed that pa-
rameters Qs Gy, A, K(A)) K‘(R), a, a,mn, K(")y K‘(")v Ay s Ay +ys A’ Ci9 m have
been computed inthe described manner. The discharge through the given flow
region is equal to the discharge through the basic flow region. Therefore

= K'(m)
Q-2K(m$KH-. ......... ..-..........---o..‘...(27)

To compute the exit gradient, observe that

kxdy  Kdy ~ Kk dW at dz"""""""”""(28)

Derivatives dw/(dW), dW/(dt) and df/(dz) are obtained from Eqgs. 21, 23
and 26. Then

7z
7H sinh ==

X 4mKT V(€ - 1)(€ - a,) sn %’%

For point B [Fig. 1(¢)]; 2 = iT, ¢ = 0, and ¢ = 1, therefore, quotient R =
[sinh (7Z/T)]/[sn (2K¢/kH)] has the indeterminate form R = 0/0. Then for
¢ -1

Ig

T S T e W (90 )

lim R =

s o TN (30)
—Ecoshﬁg

_ T T dt

T 2K 2K . 2K do

xH " %8 B @

Note that cosh (i) = cos 7 = - 1,dn o =1,cn 0 = 1and
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. _mkH dz _ _ . WH . (31
hmR———ZKT @ - ZZKTIE A et e B AR Sn e B .. (31)

is obtained. Substituting

Ig = T e T L e (32)

4K(m)T ¢/ m sin ;—‘;
is obtained, in which S = the depth of the downstream cut-off and T = depth
of the downstream fragment.

Once the magnitude of the exit gradient hasbeen found, the factor of safety
with respect of piping is then ascertained by comparing this gradient with the
critical gradient I, = y'/7, in which y' = the submerged unit weight of soil
and y = the unit weight of water.

Jv
rf K
S All—L
1 la T |
| |
e
|C C‘I -
TTTT 77 T T
L ‘_.{ 2

\_.___

FIG. 5.—INTERMEDIATE FRAGMENT OF FLOW REGION

The pressures on contour ABB'A' are computed as follows (Fig. 5). Pres-
sure p at a given point of ABB'A'isp = ¥ [¥' - (¢/«)], in which ¢ = the po-
tential at this point and y' = the vertical distance of the point from the
downstream water level. Therefore, potential ¢ at various points of contour
ABB'A' needs to be known. According to Eq. 14: ¢ = sn {[(K'2/T) - K], A},
in which K/K' = L/(2T) and K = K(1), K' = K'(A).

Along segment AB z =1y
Along segment BB' zZ =X+ z?‘
Along segment B'A’ z=L+ 1y

Putting 4 = x/L and p = (T - »)/T, yields
Along AB ¢ = % dn (pK', )')

] N 1
Along BB' { = 5—1 [(2r + D]K,A
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Along B'A' ¢ = - % dn (p k', 2")
in which A' = V1 - A2

Once the auxiliary variable ¢ is computed at each interesting point of the
contour ABB'A', variables # and W are computed by means of Eqs. 17 and 19.
Eq. 17 gives for «

1 +a) -a
u=F[ %mg%g—_nl'”] R = L T N(34)

Then Eq. 19 gives

g c'-c
W=20C+ Rm) Wige e e es o I R L O AP (35)
Finally, potential ¢ is computed at each interesting point from Eq. 26, i.e.
- kA, 1 of1 w
o 2[1 KF<mtanh2,m>]........ ........... (36)

NUMERICAL VERIFICATION OF PROPOSED METHOD

The accuracy of the proposed method, as well as Pavlovsky’s, was checked
in the subsequent special flow regions.
In flow region I, four cases were considered as follows:

Case 1 L/T = 1.00 S/T = 0.05
Case 2 L/T = 1.00 S/T = 0.15
Case 3 L/T = 1,00 S/T = 0.60
Case 4 L/T = 0.50 S/T = 0.15

In flow region II, two cases were considered:

Case 1 L = 0.9838T; T, = 0.9998T; T, = 0.9871T
S, = 0.5999T; S} = 0.60017T; S; = 0.1691T
S, = 0.1562T
Case 2 L = 0.980ST; T, = T, = 1.0146T
S, = S, = 0.35707; S} = S} = 0.3424T
In flow region III five cases were considered:
Case 1 L/T = 0.4230 S/T = 0,0273
Case 2 L/T = 0.9175 S/T = 0.1534
Case 3 L/T = 1.1865 S/T = 0.3420
Case 4 L/T = 1,1290 S/T = 0.4364
Case 5 L/T = 1.1490 S/T = 0.5505

The proposed method, as well as Pavlovsky’s was applied in the afore-
mentioned cases and potential ¢ at characteristic points, exit gradient /g, and
discharge @ were computed. These magnitudes were then compared with the
exact ones.
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The exact magnitudes can easily be computed in the simple flow region I
(4,8), but this is not the case in regions II and IIL. Thus the following indirect
TABLE 1.—DAMS WITH CUT-OFFS (1, ) method was applied.
If discharge Q and the values of potential ¢ at the vertices of a flow region
are known, the length of the sides of this region can easily be computed. In-
Proposed Method Pavlovsky’s Method
Items | Exact values
Values | Error, as a percentage | Values | Error, as a percentage TABLE 2.— EMBEDDED DAMS WITHOUT CUT-OFFS (TI)
(1 (2) 3) (4) (5) (6) ;
(a) Case I-1 Proposed Method Pavlovsky’s Method
Items Exact values
Q/xH 0.519 0.518 0.0 0.543 4.5 Values | Error, as a percentage | Values | Error, as a percentage
- ¢p/kH 0.193 0.192 0.5 0.246 27.5 (1) (2) (3) (CY] (5) (6)
- ¢,/kH 0.134 0.134 0.0 0.217 62.0
Ig T/H 1.873 1.868 0.0 2.761 47.0 (a) Case -1
(b) Case 1-2 Q/kH 0.726 0.749 3 0.886 22
J, T/kH 1.340 1.352 1 0.913 32
Q/xH 0.488 0.488 0.0 0.496 1.5 - bc/xH 0.125 0.150 20 0.307 145
- ¢p/kH | 0.331 0.332 1.0 0.351 8.0 Ig T/H 3.070 3.850 25 7.160 133
- ¢,/kH 0.225 0.225 0.0 0.276 22.0
Ig T/H 1.016 1.016 0.0 1.164 14.5 (b) Case MI-2
() Case I-3 Q/kH 0.425 0.438 3 0.454 7
Jo T/xkH 0.582 0.583 0 0.536 8
Q/xH 0.339 0.338 0.5 0.338 0.5 - 9c/kH 0.160 0.204 27 0.254 59
- ¢p/kH 0.642 0.641 0.0 0.641 0.0 Ig T/H 0.805 0.903 12 1.049 30
- ¢ /rH 0.386 0.386 0.0 0.391 1.5
Ig T/H 0.3717 0.377 0.0 0.3717 0.0 (c) Case II-3
(d) Case I-4 Q/kH 0.286 0.294 3 0.295 3
Jo T/xH 0.450 0.454 1 0.446 1
Q/xkH 0.649 0.649 0.0 0.658 1.5 - do/kH 0.177 0.218 23 0.235 33
- ¢p/kH 0.465 0.485 0.0 0.488 5.0 Ig T/H 0.381 0.410 8 0.426 12
- ¢,/kH 0.310 0.310 0.0 0.365 18.0 z
Ig T/H 1.385 1.382 0.0 1.542 11.0 (d) Case MI-4
(e) Case II-1 Q/kH 0.254 0.257 1 0.261 3
Jo T/xkH 0.460 0.460 0 0.465 1
Q/kH 0.322 0.323 0.5 0.327 1.5 - $c/xH 0.189 0.232 23 0.238 26
- ¢,/kH 0.633 0.631 0.5 0.622 1.5 Ig T/H 0.308 0.323 5 0.333 8
- ¢p/kH 0.394 0.395 0.5 0.392 0.0
- ¢o/kH 0.218 0.220 1.0 0.235 8.0 (e) Case III-5
- ¢, /kH 0.147 0.152 3.5 0.185 26.0
Ig T/H 0.651 0.652 0.0 0.741 14.0 Q/xkH 0.209 0.214 2 0.213 2
Jo T/kH 0.478 0.478 0 0.473 1
(f) Case II-2 - ¢c/KH 0.194 0.226 16 0.228 17
Ig T/H 0.234 0.244 4 0.244 4
Q/kH 0.355 0.359 1.0 0.360 1.5
- ¢,/kH 0.732 0.729 0.5 0.710 3.0
- kH 0.592 0.590 0.5. 0.586 1.0
- gf//w 0.408 0_210 o.g 0_4;;4 1.5 deed, the Christoffel-Schwarz equation 1 gives
- o/rH 0.268 0.271 0.5 0.290 8.0 <H <H
IgT/E 5, 0487 2405 LS B 3.5 w =B FmEmy B L U adn i, (8T)
2K 2
2Kw
§=sn[<—'-c§-+K>,m] ..... wyinge ene el e suaie eeeeeesees. . (38)
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: K'(m 2
in which %(”—l)) -8 R RO T N SR~ (39)
For given @, the complete elliptic integrals K, K' and the modulus » from
Eq. 39 may be obtained. Consequently, knowing the magnitude w = ¢ at each
vertex of the flow region, Eq. 38 canbe applied to give the values of auxiliary
variable ¢, i.e., parameters a;, c; of the Christoffel-Schwarz integral 2.
Thus, this integral becomes a definite integral which can be computed with
the desirable approximation to give the dimensions of the flow region. In
cases II and III this integral is expressed by means of elliptic integrals of the
first, second and third kind (8). Thus, computations are facilitated.
If parameters m,a;, ¢4, are known, the exit gradient Ig can easily be com-
puted. The Christoffel-Schwarz equation 2 can also be written as

& o(g)
(@ -»)JeE-1
in which y = %’ o) = M
nveg - Ci

If 8 is a very small positive quantity, it can be assumed that function o(£)/
VZ¥ = 1 = constant = o(y)/Vy% - 1 wheny - 6 = £ = v + 0. Consequently

dz = M

Az Mo (7) TACTI 13 . _ Moy 1n6+2‘y 41
e i e T ap. e e e oo (41)

is obtained. For 6 ~ 0 lim In [(6 + 2y)/(6 - 2¥)] =1n (- 1) = ¢7 and lim Az
= - iT, [Fig. 1(a)]. Thus

2T,y Vo - 1 A 2T,y V9¥ - 1

M= 2T T e . (42)
is obtained, and
-1dp _idw
IE = E T e Gn e eeni ettt (43)
From Eq. 37 dw = % de iy o W S el(da)
V& - NeF - 1)
From Eqs. 40 and 42 dz = Woy V=T o)) oo s (45)
ao(y)Ne? - y?) VEF - 1
Consequently %_‘: - kmH o(y) KO( _) ! g B i P b Tl (46)
4KT, V¥ - 1 .
At point B [Fig. 1(a@)] ¢ = 1. Therefore
_ TmH o(y)
IE—m ........... © 8 o 8 s s e s s e e s e e 0 e e e e e e (47)

This was the method followed herein. Flow regions II and III were con-
structed to have definite values @ and ¢ at their vertices. The exit gradient
was computed from Eq. 47. Then, the proposed method, as well as Pavlov-
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sky’s was applied and the derived @, ¢, I values were compared with the a
priori known exact ones. The results of computations are given in Tables 1
and 2.

It is observed that the results of the proposed method almost coincide with
the exact ones, in flow region I and II, i.e., in cases of a flat bottom dam with
cut-offs at the one or both ends. In flow region III the observed errors are
considerable because of the special characteristics of this region.

In the vicinity of B, C (Fig. 6), slopeangles a of the streamlines are great,
while the proposed method assumes that a = 0. Therefore, the images of a
small upper part of BB',CC' on the plane w are significantly different from
the images of the corresponding upper part of XX' (Fig. 2). If the embedded
structure III has two small cut-offs at B and C, the accuracy of the proposed
method is considerably improved. To verify this, the subsequent special flow
region was considered. The cut-off depth S' is only one-tenth of the founda-
tion depth S (Fig. 7).

— L — — L—+

=1l j —)
i 224D

77777777
(1) (Ir)

FIG. 6.—SCHEMES USED FOR NUMERICAL VERIFICATION

The following results were derived:

Accurate Results
6o = - 0.256 kH, ¢, = - 0.232 kH, Iy = 0.390 g, Q = 0.308 kH

Results of Proposed Method.—The results of the proposed method are
given as follows:

éc = - 0.277T«kH Error 8%
¢, = - 0.257kH Error 10 %
Ig = 0.412 T/H Error 6 %
Q = 0.314 kH Error 2%

It is observed that the error of ¢, is considerably smaller than the error
of ¢ (23 %) inthe corresponding flow regionIll-3. The errorbecomes smaller
as the quotient S'/S becomes greater.

The relative inaccuracy of the proposed method in case III seems to be re-
stricted at the vicinity of the singular points B and C.

In the case under consideration, Eqs. 44 and 45 give
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_do _mkH _[(y? - &®)(y? - &)
& = %" KT G e BT e T e (48)
in which J, = the potential gradient along BC = v, and

a=§c=-§B=sn[<%£+K),m]..................(49)

The gradient J, is nearly constant along BC, except at the vicinity of points
B and C where it increases quickly and then becomes infinite at these points.
Consequently the potential distribution is as shown in Fig. 8. This distribu-

e A y
;-— L=0926T ——.f
A jD’
4 S=0361 T
YD /L/////////// .
S=0034T

1B c?_T

R /R Sl L (R (ST L[l el e/

FIG. 7.—FLOW REGION WITH SMALL CUT-OFFS

L/2 L/2————-|

X

FIG. 8.—DISTRIBUTION OF POTENTIAL ALONG BASE OF EMBEDDED DAM
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tion is, basically, defined by the gradient J, at the middle point 0. From Eq.
48 the following equation is obtained for ¢ = 0.

_ TkHy y: - a?
Jy Vo B R RS R (50)
On the other hand, the proposed method gives
mkH
Jy = R e A T T e (51)
4K, m, sn (2—5}191)(7‘ -9
in which (Eq. 25) m, = tanh (4/4). Atpoint O ¢ = - kH/2. Consequently
s mkH
Jo-W................---.. .......... (52)

Given 0 <|¢pl,|¢.| < kH, gradient J, does not become infinite at points B,
C, according to the proposed method.

Pavlovsky’s assumption involves a linear potential distribution along BC.
Thus, the gradient J, is according to Pavlovsky’s method:

Jo=£‘%ﬂ=K—H——E—2iﬁ ......... (53)

Quantities J, were computed by means of Eqs. 50, 52 and 53 and they are
given in Table 2.

It is observed that gradients J, of the proposed method coincide with the
exact ones. Therefore, the potential distribution is given in Fig. 8 by bb'c'c,
i.e., the errors concerning the computation of potential are restricted in the
vicinity of points B, C. Pavlovsky’s method also gives accurate values for J,
except in the cases where the ratio S/T is small.

The results of the whole checking are given in Tables 1 and 2. These re-
sults are summed as follows:

1. In all the examined cases of a flat bottom dam with cut-offs at one or
both ends, the results of the proposed method almost coincide with the exact
ones.

2. In all the examined cases of an embedded dam without cut-offs, the
computed ¢, values at the end C are considerably different from the corre-
sponding exact ones. Considerable errors are also observed for exit gradient
I, when exitpoint D is near the singular point C. Except in the vicinity of the
end points B and C, the computation of ¢ values at intermediate points of the
base BC seems to be accurate. The computation of discharge @ is also very
satisfactory.

3. In the examined case of an embedded dam with two very small cut-offs
at the ends B and C, the errors of the computation in the vicinity of these
points are considerably smaller than the corresponding errors in case of the
analogous embedded dam without cut-offs. It seems therefore that the pro-
posed method is satisfactory in case of a flat bottom or embedded dam with
cut-offs at the ends.

4. The results of Pavlovsky’s method are less accurate than the results of
the proposed method in all the cases examined. Pavlovsky’s method gave sat-
isfactory results in cases where the ratio S/T was large, but inaccurate re-
sults were obtained in cases where the ratio S/7 was small.
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It is easy to verify that in the cases characterized by small S/T values,
Chugaev’s simple method gives more accurate results than Pavlovsky’s
method, except for discharge @, for which the results of Chugaev’s method
are less accurate. Itis also easy to verify that in many of the examined cases
111, Chugaev’s method gives more accurate ¢, and I values than the proposed
method. But Chugaev’s method assumes that the potential ¢ is linearly dis-
tributed along the base BC of the dam; therefore the erroneous straight line
from ¢ 5 to ¢ is finally obtained (Fig. 8). It must also be noted that in several
cases III, Chugaev’s method considerably underestimates the discharge.

CONCLUSIONS

The present work introduces a new approximate analytical solution of the
confined flow problem under hydraulic structures. The proposed method is an
improvement of Pavlovsky’s method of fragments.

The method is applicable under the following basic assumptions.

1. The pervious stratum can be considered as homogeneous and isotropic
and Darcy’s law is valid.

2. The flow can be considered as two dimensional.

3. The contour of the flow region is composed of horizontal and vertical
straight line segments.

The proposed method can give the complete solution of the flow problem,
i.e., the ¢, ¥ values at any point of the flow region.

The method isbasedon a clear assumption. It was assumed that the images
in plane w = ¢ + 7¥ of the vertical lines dividing the flow region into frag-
ments are similar to the images of proper vertical lines through the flow
region of the flat bottom dam without cut-offs. Afterwards a rigorous mathe-
matic treatment was applied to give the solution to the problem.

The fundamental assumption of the proposed methodis satisfactory in case
the aforementioned vertical dividing lines are extensions of cut-offs and the
numerical results almost coincide with the exact ones.

In case the upper point of a dividing vertical line is a vertex of the founda-
tion contour at which the interior angle is 37/2, the fundamental assumption
of the proposed method is no longer satisfactory in the vicinity of the vertex.
Therefore inaccurate results are obtained in this vicinity. Anyway the method
seems to give satisfactory results concerning discharge and ¢ values except
in the vicinity of the vertices where, on the other hand, the real flow pattern
is not clear.

The proposed method involves more computation work in comparison to
the other approximate methods, especially Chugaev’s, but the computation
procedure is systematic and it does not require mathematic investigations.
Consequently the aforementioned disadvantage of the method may be consid-
ered of little importance.
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APPENDIX II.-NOTATION

The following symbols are used in this paper:

A, C; = constants;
cosh # = hyperbolic cosine of u;
cn (u,m) = elliptic cosine of » for modulus m, i.e., cn (x,m)
T =t wm);
dn (u,m) = y1 - mZ sn? (u,m);

F(¢m) = eiliptic integral of first kind for modulus m, i.e., F(¢,m)
o [ag/VTT -8RI - m?E7));

H = total hydraulic head [see Fig. 1(a)];
Ip = exit gradient;
J = potential gradient;
K(m) = F(1,m) = complete elliptic integral of first kind;
K'(m) = F(1,m') = complete elliptic integral of first kind;
L = length (horizontal);
In # = Naperian logarithm of u;
M, M' = constants;
m,n = moduli of elliptic integrals and functions;
m'n' = comoduliof elliptic integralsand functions, i.e., m' = yT = m?
andn' = VT - n7%;
N,N' = constants of integration;
p = pressure;
Q = discharge (per unit normal to direction of flow);
S = depth of cut-offs, depth of foundation;
sinh » = hyperbolic sine of «;
sn (u,m) = elliptic sine of #, for modulus m, i.e., ifu = E(¢,m), sn (x,m)
=&
T = thickness of pervious stratum; .
tanh = hyperbolic tangent of «; i
v = seepage velocity; |
W = W, + W, = auxiliary complex function (see Eq. 4); :
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complex coordinate of point in flow region;
1/m = unit weight;

difference {see Fig. 1(b)];

point of upper half plane;

coefficient of permeability;

modulus of elliptic integrals and functions;
comodulus;

product (see Eq. 2);

function of ¢ as defined in text (see Eq. 40);
potential function (velocity potential);
stream function; and

complex potential.
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Engineering Properties of Mine Tailings®

Closure by Howard C. Pettibone*, M. ASCE and C. Dan Kealy®

The writers thank Jackson for his comments on several possible pollution
hazards. His discussion fills an acknowledged void in the paper and is a welcome
supplement. The discusser’s point of caution is well made and we agree that
good engineering judgment should be equally applied to the structural and pollution
aspects of any proposed tailings usage.

Approximate Solution to Flow Problems Under Dams®

Discussion by Boris S. Browzin,? F. ASCE and Larry A. White,> M. ASCE

The analysis of ground-water flow under hydraulic structures, e.g., dams
primarily, has considerable practical importance during the design of these
structures when situated on pervious soils. At present the tedious procedure
of plotting the so-called flow net is used. It is true that the flow net as a
graphical procedure is a solution to the problem, but the underground configuration
of adam, which necessarily must have more than one cut-off, makes this procedure
graphically difficult. It is said that experience is essential when plotting the
flow net, but even in specialized design offices the flow net is not considered
a routine job, consequently there are no experienced flow net plotters available
for relatively quick and accurate flow net construction. Moreover, several
alternative proposals usually exist before a final one is selected and for each
proposal a flow net is needed. Consequently, the amount of work required
for the study of uplift based on the flow net requires considerable time.

For this reason, efforts of researchers to recommend an exact or sufficiently
accurate and rapid method utilizing analytical methods is important. Christoulas

*September, 1971, by Howard C. Pettibone and C. Dan Kealy (Proc. Paper 8382).
W“ R;search Civ. Engr., Spokane Mining Research Center, U.S. Bureau of Mines, Spokane,
ash.

w’Mining Engr., Spokane Mining Research Center, U.S. Bureau of Mines, Spokane,
ash.

"Novembgr, 1971, by Demetrius G. Christoulas (Proc. Paper 8528).

2Chf., Soil and Civ. Engrg. Branch, Bureau of Design and Engrg., Government of
the Dist. of Columbia, Washington, D.C.

3Civ. Engr., U.S. Army Corps of Engrs., Baltimore Dist.
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is to be commended for his work and use of the extensive Russian literature
on ground-water flow, to present a working method for determining uplift. Browzin
presented another method in a publication in French (10), for the same purpose.

Practicing engineers should not be afraid of using analytical methods if the
methods are presented in a convenient manner. The improvement of Pavlovskii’s
method presented by Christoulas belongs to this type of publication, i.e., it
offers a practical tool for the engineer. However, a numerical example of the
method is considered necessary; one was not provided in the paper.

The well-known Schwarz-Christoffel transformation, that maps the half space
including the x-axis into a polygon, is called by Christoulas, following the Soviet
innovation, the Christoffel-Schwarz transformation, as opposed to the tradition
in western literature. This innovation is based on the fact that Christoffel
(1829-1900) published his work in 1867, 2 yr earlier than Schwarz (1843-1921),
i.e., in 1869. However, Schwarz treated it as a mathematical problem, whereas
Christoffel as a problem of application, to solve a heat problem, each discovering
the method independently.

The transformation is provided by the integral

3
Z=AI (L—a)u7 ' (L—ay)=! i (- a)m=td O Bt s oL 4
0

in which &m, ({ = £ + i), designate the positive half plane and xy (z =
x + iy) the plane in which the polygon is located. The terms a 7 represents
the magnitude of the polygon angles; a, = the abscissa of the apexes in the
{-plane; and A and B are complex constants. Eq. 54 is called the Schwarz-Chris-
toffel transformation or integral. From Eq. 54 the two equations in Christoulas’
paper may be derived among many others, each particular equation is usually
called a mapping function. It would certainly be of interest to the reader if
the author could present the derivation of the two mapping functions (Eqs.
1 and 2) from Eq. 54 or indicate a literature source of the derivation, because
Eqgs. 1 and 2 represent the basis of the method. It would be interesting to
compare the approach of earlier authors to that of Christoulas.

The concept of the Pavlovskii’s approximate method consists of subdividing
the field of flow (under dams) into fragments. From the lower end points of
the cutoffs, Pavlovskii traces verticals downwards, dividing the field of flow,
as was mentioned by Christoulas. The method results in relatively large errors,
but Pavlovskii indicated a way to obtain further improvement. This was done
by Chertousov (equivalent to Tsertoousov in Christoulas paper, Ref. 9) and
independently by Chugaev (11,12). Chertousov divides the field of flow by an
approximate tracing of equipotential lines from the intersection of the cutoffs
with the line of contact of the dam bottom with the soil. The equipotential
lines begin as a tangent to the bisectrices and end as a tangent to the verticals
to the impervious boundary below the soil stratum. The accuracy of tracing
these equipotentials have little influence on the result. Chugaev proposed a
method based on approximate determination of the coefficients of hydraulic
resistance for each portion (fragment) of the field of flow by adaptation of
theoretical solutions of flow for conditions identical or similar to flow conditions
in each fragment. The method was included in 1957 in Code Requirements
of the Ministry of Electric Power Stations of his country for the design of
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dams and made the subject of a book (12). Chertousov’s method isnot mentioned
by the author and reference to the original Chugaev publication (11,12) is not
provided.

These two improvements of Pavlovskii’s method, firstly, Ref. 9 and secondly,
Refs. 11 and 12, provide a complete solution of the problem for engineering
purposes, i.e., the determination of the uplift, the flow gradients, and velocity,
including the danger of piping at the toe and the ground-water discharge. However,
the merit of Christoulas’ work consists in providing further research in the
analytical development of Pavlovskii’s method and presenting calculations proving
the accuracy of this method. Nevertheless, the writers do not think that an
improvement of Pavlovskii’s method is the correct way to offer to the engineering
profession a substitute for the old-fashioned flow net procedure. The assumption
on which the author’s method is based is this. The fragment 1 downstream
border is represented by the line A, B, [Fig. 1(a)]. Its image in complex potential
plane o is curve a, b,. Because of the conformal representation, a [Fig. 1(a)]
and o' [Fig. 1(b)] are of the same magnitude at point M and in its image
M’. However, it is incorrect (perhaps it is a typographic error) to say that
“‘this angle (i.e., a) vanishes at point A and at point B. Angle o is w/2 at
A and at B because the streamline is vertical at these points. But angle o
vanishes at points A, and B, because at these points the streamline is horizontal.
The author further considers a simple region called a basic flow region in
which a vertical line XX’ exists, the image of which in plane w [Fig. 1(b)]
is also the line a, b, i.e., the line a, b, is the image which is common to
both, the line A, B, [Fig. 1(a)] and the line XX' (Fig. 2). Then the mathematical
descriptions of the line XX’ are found by the author and consequently the
line a, b,. This procedure is certainly very artificial, but since it provides the
solution, the method may be developed into a working tool.

The writers, however, believe that the right way to develop the theory, and
to find an analytical method for the calculation of the uplift on dams and for
other ground flow characteristics, consists of using the method of successive
conformal transformations of the flow region of arbitrary configurations until
the region becomes a simple case of a flat dam without cutoffs. To illustrate
this method consider flow region z [Fig. 9(b)] and its image in the positive
half plane { [Fig. 9(a)]. The Schwarz-Christoffel integral, Eq. 54, provides
mapping function z to transform plane { into z. The reverse transformation
from z to { may be obtained only for few problems but not in general. The
angles of polygons 2, 3, 4, and 6 at infinity representing the space below the
dam are w/2, 2w, w/2, and 0, respectively, therefore, a, = 1/2, a; = 2,
a, = 1/2, and a = 0. Taking into account that in the integral of Eq. 54
it is possible to introduce arbitrarily three constants for the values of a,, a,,

. a,, the following values will be assigned: a, = ~s; a; = 0; and a, =
S; in which S is the length of the cutoff. Introducing these values into Eq.
54

¢ gdt
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Constant B is determined from known values at point 4, Z = 0, and { =
S;then B=0. Atpoint3, Z = iSand { = 0, then A = 1, so

VAT & I o i oo Bo i G2 570 ST iss oD o 0% B (57)
and consequently { =V ZZ+ 87 . it (58)

This is the mapping function transforming plane Z into plane { and developing
the cutoff into straight line 2-3-4 in plane {. The dam underground contour
transformed into the straight line makes possible the application of the solution
for a dam without cutoff to the dam with one cutoff. The remarkably simple
mapping function, Eq. 58, makes even possible to use the graphical procedure
(11) for obtaining the uplift values at any point fom 1 to 5 [Fig. 9(b)].
Unsymmetrical cutoff requires an additional conformal shift.

If the dam has a second cutoff, the mapping of this second cutoff into plane
¢ distorts it into a slightly curved line. The same mapping function, Eq. 58,
is then applied a second time, to develop the second cutoff into a horizontal
line, i.e., plane { is transformed into plane {, and if necessary a third successive

——
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Fig. 9.—Transformation of Haif-Plan { into Polygon Containing Cut-Off S in Plan
z

transformation is used to map plane { , into plane { ,. This process finally transforms
any arbitrary underground contour into a straight line. Because of the simplicity
of the mapping function, Eq. 58, the practical application of the method of
successive conformal mapping in engineering design may become a routine
procedure when the method is further investigated and offered to the profession
in a comprehensive presentation.
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APPROXIMATE SOLUTION T0 FLow PROBLEM UNDER Dams®

Closure by Demetrius G. Christoulas,* M. ASCE

Broszn and White’s interest in the writer’s paper is appreciated very much
Browznp anq White consider the writer’s method as a working one )llaut th ;
also cpnsnder 1? as very artificial. They believe that the right way t’o find H
analytical solution to flow problem under hydraulic structures consists of ing
t!ue method of successive transformations presented by Browzin (1,10) and s
tioned by.the writer in his paper (1). il
fThe writer pelleves that an approximate method must be valued on the basis
of the .followmg characteristics: (1) Clarity of the assumptions on which th
gpprox{mate method is based so that the application field of the method i:
lscelimble; (2) accuracy and applicability of the method in a broad field; (3)
comp eteness of the method; and (4) computational work required in th i
tion of the method. s
asThe v&"ntel" s methodlls based on a clear and reasonable assumption. This
sumption is very satisfactory in a broad application field (deep and short
cut-off§). The method is also complete since it can give the & ¢ values i:‘l
;?Symp(:;lntdqf the flow region. As Fhe writer stated in his paper ZConclusions)
ok ethod involves more computational work in comparison to the other approx-
imate l:nethods, especially Chugaev’s, but the computation procedure is systemat
ic and it floes not require mathematic investigations. Consequently, the aft,)re o
tioned dl§advantage of the method may be considered of little im’portance il
‘ Browzin and White, in their discussion, gave an idea of the method of st;
sive tran‘sformat‘ions presented in detail by Browzin in 1964 (1,10). This me(i(l:lesc;
is especnally.smtable in case of a pervious stratum of infh;ite .de th. F °
‘straturr? of finite depth T the transformation { = V72 + 5 givesp a.cu:‘)\l/.ecal‘
lsl;r;g;agrl\]/tlollij;eb(}l:]ndary (]:: D, [Fig. 1(a)] in plane {, approximated by a mean
L h.t : c;ﬁse]t e S/T va‘.lues. are small the curving of the image of
I;ca;e thg S,/ 7(: ei atter approximation does not introduce considerable error.
‘ values are great, the approximation by a mean straight line
may mFroduce considerable error, so Browzin considered (1,10) th h
as applicable only in case S/T = 0.50. , e
traII:srfnozg'n :fioalizo not'ed that in case of finite depth T the method of successive
ST requires, as the writer’s method does, the use of elliptic integrals
farltf rl(S) n:n::;litthat Othe hmodel of homogeneous pervious stratum is very often
f i y. On the qther hand, the problem in case of heterogeneity can
e solved through numerical methods. However, the writer believes that th
§ear.c!1 for more accurate analytical methods on the basis of homogeneit s
Justified. The analytical methods are inexpensive, easily applicable gand t)lllel;

“November, 1971, by Demetrius G. Christoulas (Proc. Paper 8528).

‘Hydr. Consulting Engr., Athens. Greece.
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give a clear insight to the problem. Consequegtly, th?y are preferz}ble in case
the model of homogeneous pervious stratum is .conSIdered‘ as satisfactory or
the lack of sufficient field measurements makes it necessarily acceptable. Thei
writer believes that, in these cases, the application of‘the more accurate analgltllf:a
methods is justified since the addition of compptatlonal errors to the modeling
errors is so avoided without excessive work in comparison to.lc:ass accurate
methods. It must also be noted that some problems of determmmg the flow
characteristics for structures founded in an heterogeneous pervious stratum can
be reduced to one for a homogeneous perviou§ stratum. Po}ubarmova-Ko;:hma
has suggested such a method in case the pervious stratum 1s composed of two
ifferent permeability (4,8). ‘
la):IZU(:efsg:)flferaiseg in the disZussion concerns the derivation of mz}ppmglfung-
tions 1 and 2. The functions, 1 and 2, immediately result from Christoffe -Sch-
warz transformation (Eq. 54) on the basis of Figs. 1(a), l(b;,/ 'ln(czz. F_or tle
ig. 1(b)] a7 = a,7m = a;7 = a,W, a4, = — ,a, = -1,
ZCt:nfl :, u:z 4[I=:lg+1 /( nzl Colnsequelitly, funsction 1 is obtained. For th.e polégon,
z, the angles, aw, take the following values: (1) aw = 0 ‘at the vertlc_es lm,(z;gl
= —1/m), D_(a, = —-1/m); 2) am = ‘1/2 at the vertlc'es A (iz = —_),2
(a,_, = +1); @) aw = 1/2 at thfe v«:‘l'tlc;s.cib(ta,in:dci), and (4) aw = 2w
ices A, (a, = a.). Thus, function 2 1s obta 1 ‘
atgltfv;,:l::l(;', the' (an‘gle, ;1), does not vanish at ‘points A,' B but at pou.ns A,
B.(i=1,2,3...) The error was a typographical error in thq rpanuscnp%.
'Errata.—-The following corrections should be made to the original paper:

H Cep2 2300 3 tead Of ucz B 1/m2n
Page 1573, Eq. 2: Should read *‘{ 1/m?)” ins N
Page 1575, line 3: Should read “‘A;B, (A, B,, A, B,, etc)” instead of AB (A, B,,
A B F etC),, H [ " [ 1
P;ge21575, lines 10, 11, 12: Should read ‘‘A;” instead of ‘A and ¢B,” instead
Of “B,’ H (X3 "
Page 1577, line 14: Should read “problem”‘ instead of“ proble,r’n 6)
Page 1578, line 4: Should read *‘{ = —ao’.’ instead o‘f‘ L= (3?
Page 1579, line 8: Should read *‘Eq. 12” instead of ““Eq. 42

T wz dz” n f“k h'n'z dz
“— — i —cosh ——
Page 1581, Eq. 30: Should read N cosh T instead o - =

Page 1582, Eq. 33: Should read “sn [2u + 1)k, \]” instead of “sn [Qp
+ l)] K, R,, Y 3 X3 — 9
Page 1583, line 23: Should read “‘L = 0.9805T"’ instead of *‘L = 0.980ST
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BEHAVIOR OF CROSSED %EAMS oN ELAsTIC FOUNDATIONS ®

Closure by Ami Glassman,*> M. ASCE

The writer would like to thank Ramanathan for the interest he has shown,
and the comments he has made.

The comment concerning the number of equations and the use of Digital
Computers does not sound as the writer mentioned in the paper, as if the
reduction of the number of the simultaneous equations is for practical use,
or even with the aid of desk computers, where the number of unknowns is
limited. (The example itself has been solved by a 1130 IBM Computer, and
it is mentioned in the paper).

The remark that ‘““In practice, interconnected crossed beams for foundations
are used only in the form of girds . . .”” does not refer to this paper, as this
paper deals only with crossed beams. The discusser may find answers to this
problem in Refs. 2, 4, 6, and 8. The writer approves of Eq. 16, as it was
developed from Egs. 9 and 10.

As for the experiments, the dimensions of the rubber pad were 100 cm X
100 cm. The thickness was checked as 5 cm, 10 cm, and 20 cm. The differences
between the results were about 10%.

Errata.—The following corrections should be made to the original paper:

Page 7: The heading COMPUTER RESULTS should be omitted.

SEEPAGE THROUGH Dams with HorizoNTaL Tog Dramn®

Closure by Mohammad S. Moayeri,* A. M. ASCE

The writer wishes to thank Mayer for his discussion of the paper. Mayer
correctly pointed out that in practice the horizontal permeability of the material,
which is supposed to be isotropic, is usually greater than the vertical permeability.
For this reason, designers of earth dams should be careful not to follow too

closely the results of a mathematical study based on the assumption of homogen-
eous and isotropic material.

*January, 1972, by Ami Glassman (Proc. Paper 8626).

3Dir., Yotam, Advanced Design Consultants, Ltd., Haifa, Israel.
®May, 1972, by Mohammad S. Moayeri (Proc. Paper 8878).

? Assoc. Prof. of Engrg., Pahlavi Univ., Shiraz. Iran.





