CONTENTS

Papers

HEAVE AND LATERAL MOVEMENTS DUE TO PILE DRIVING
by D. Joseph Hagerty and Ralph B. Peck 1513

SCALE AND BOUNDARY EFFECTS IN FOUNDATION ANALYSIS
by James Graham and John Gordon Stuart 1533

ANALYSIS OF LOAD-BEARING FILLS OVER SOFT SUBSOILS
by James K. Mitchell and William S. Gardner 1549

APPROXIMATE SOLUTION TO FLOW PROBLEM UNDER DAMS
by Demetrius G. Christoulas 1573

DISCUSSION
Proc. Paper 8484

TECHNIQUE FOR STUDY OF GRANULAR MATERIALS, by
Stephen J. Windisch and Michel Soulié (July, 1970. Prior
Discussion: Apr., 1971).

PLANE STRAIN CONSOLIDATION BY FINITE ELEMENTS,

(over)

This Journal is published monthly by the American Society of Civil Engineers. Publications office is at 345 East 47th Street, New York, N.Y. 10017. Address all ASCE correspondence to the Editorial and General Offices at 345 East 47th Street, New York, N.Y. 10017. Allow six weeks for change of address to become effective. Subscription price is $16.00 per year with discounts to members and libraries. Second-class postage paid at New York, N.Y. and at additional mailing offices. SM.
NONLINEAR ANALYSIS OF STRESS AND STRAIN IN SOILS,
errata 1597
COMPARISON OF STRESS-DILATANCY THEORIES, by George
J. W. King and Edward A. Dickin (Sept., 1970. Prior Discussion:
Apr., 1971).
closure 1598
ELECTRIC PENTROMETER FOR SITE INVESTIGATIONS,*
by Jacobus de Ruijter (Feb., 1971).
by Guy Sanglerat 1601
FLOW THROUGH ROCKFILL DAM,* by Horace A. Johnson
(Feb., 1971).
by Thomas Kliiber and Herbert Breth 1609

TECHNICAL NOTE
Proc. Paper 8511

PULLOUT RESISTANCE OF ANCHORS BURIED IN SAND
by Kent A. Healy 1615

INFORMATION RETRIEVAL
The key words, abstract, and reference "cards" for each article in
this Journal represent part of the ASCE participation in the EJC information
retrieval plan. The retrieval data are placed herein so that each
can be cut out, placed on a 3 x 5 card and given an accession number
for the user's file. The accession number is then entered on key word
cards so that the user can subsequently match key words to choose the
articles he wishes. Details of this program were given in an August,
1962 article in CIVIL ENGINEERING, reprints of which are available
on request to ASCE headquarters.

* Discussion period closed for this paper. Any other discussion received during this
discussion period will be published in subsequent Journals.
APPROXIMATE SOLUTION TO FLOW PROBLEM UNDER DAMS

By Demetrius G. Christoulas, M. ASCE

INTRODUCTION

For a hydraulic structure resting on a homogeneous and isotropic pervious stratum, the two-dimensional flow problem can be considered as one of conformal representation. In 1922, Pavlovsky proposed the use of the Christoffel-Schwarz transformation for the solution of this problem in the following way. Flow region \(z = x + iy \) is represented on the plane of complex potential \(\omega = \phi + i\psi \) by rectangle ABDC. Assuming that the contour of the flow region is composed of horizontal and vertical straight-line segments, the conformal mapping of polygons \(\omega \) and \(z \) is achieved on half plane \(\xi \) through the following Christoffel-Schwarz transformations:

\[
\omega = M \int \frac{d\xi}{\sqrt{(1 - \xi^2)(1 - m^2 \xi^2)}} + N = M \Phi(\xi, m) + N \quad \cdots \quad (1)
\]

\[
z = M' \int \frac{\Pi(\xi - a_i)}{\xi^2 - \frac{1}{m^2} \xi^2 - \Pi(\sqrt{c_f})} d\xi + N' \quad \cdots \quad (2)
\]

in which \(\Pi \) denotes the product. Function \(\Phi(\xi, m) \) is an elliptic integral of the first kind and it can be computed easily with the use of tables. The second function is generally a hyperelliptic integral and parameters \(m, a_i \), and \(c_f \) are not known. Thus the solution can be achieved only for simple flow regions.

Due to the difficulty of an exact solution of the problem, Pavlovsky proposed the well-known method of fragments. The fundamental assumption of this method is that the vertical lines through the ends of the cut-offs are equipotential lines. Thus flow region \(z \) and its image on plane \(\omega \) are divided into simple orthogonal fragments. The Christoffel-Schwarz transformation can, therefore, be applied, and it easily produces the solution to the problem.

Note.—Discussion open until April 1, 1972. To extend the closing date one month, a written request must be filed with the Executive Director, ASCE. This paper is part of the copyrighted Journal of the Soil Mechanics and Foundations Division, Proceedings of the American Society of Civil Engineers, Vol. 94, No. SM11, November, 1971. Manuscript was submitted for review for possible publication on March 22, 1971.

1 Hydraulic Consulting Engr., Athens, Greece.
providing that the most complex functions resulting are elliptic integrals of the first kind. Pavlovsky’s assumption is more exact as the ratios, S/T, increase, in which S represents the depth of the cut-offs and T, the depth of the pervious stratum.

Besides Pavlovsky’s method, the approximate methods proposed by Khosla (6), Melechenko-Flichakov (1,8), and Chugaev (9) are applied. These methods do not aim at a complete solution of the flow problem, but at the computation of the proper quantities necessary in the design of hydraulic structures. These methods, and especially Chugaev’s, present a simple and rapid application.

The present work introduces a new approximate analytical method which is essentially an improvement of Pavlovsky’s method.

FUNDAMENTAL ASSUMPTION OF PROPOSED METHOD

It is assumed that the contour of the flow region is composed of horizontal and vertical straight-line segments [Fig. 1(a)]. The number of cut-offs is not restricted. Herein, the problem is handled in the same way as did Pavlovsky, i.e., the flow region is divided into simple orthogonal fragments by the vertical lines through the ends of the cut-offs. However, these lines, AB, A, B, C, B, etc., are not equipotential, as Pavlovsky had assumed them to be, and, therefore, their images on plane ω are not straight lines but curvilinear segments ab [Fig. 1(b)]. An effort has been made to find a family of curves approaching, as much as possible, curves ab. As representation $\omega - z$ is conformal, slope angle α of the streamline passing from point M to B is equal to angle α' between image curve ab and the Y axis, at corresponding point M'. If point M moves from A to B, slope angle α varies in a typical way. Indeed, this angle vanishes at the vicinity of point A, increases quickly to a maximum value, and vanishes at point B. Also, angle α assumes limited values. Consequently, the same holds true for angle α'. This angle varies in the described typical way and assumes limited values. It is further observed that the ratio $|\Delta\phi|/Q$ assumes limited values too. On the basis of these observations it can be assumed that the shape of curves ab is determined only by parameters $\Delta\phi$ and Q, and that all the special characteristics of the flow region have no other ef-

![FIG. 1.—FLOW REGION AND ITS IMAGES ONTO PLANES W AND T](image)

![FIG. 2.—BASIC FLOW REGION](image)
For a given flow region with cut-offs [Fig. 1(a)] characterized by total head H and seepage discharge Q, there is always a suitable flow region in Fig. 2 characterized by the same quantities H and Q. This flow region will hereafter be called the basic flow region. For a vertical segment XX' moving from AA' to BB' (Fig. 2), the quotient $\Delta \phi/Q = (\phi - \phi_{X})/Q$ varies continuously between minimum value $(\phi_{A} - \phi_{X})/Q$ and maximum $(\phi_{B} - \phi_{X})/Q$. It is evident that $(\phi_{A} - \phi_{X}) > 0$. The maximum potential difference $|\phi_{A} - \phi_{B}|$ in Fig. 1(a) is observed at the upstream or the downstream cut-off. As a rule, this maximum difference will be smaller than the maximum difference $\phi_{B} - \phi_{A}$ in the basic flow region.

The preceding observations lead to the following assumption which is the fundamental assumption of the proposed method. For a given flow region and for every cut-off of this region, there is a suitable vertical cut XX' of the basic flow region whose image onto plane ω coincides with image ab of the

![Diagram](image)

FIG. 3.—IMAGE OF FLOW REGION (1 - α) ONTO PLANE $W = W_{1} + iW_{2}$

vertical line through the end of the cut-off. For a given segment XX', $x = constant$. Putting

$$W(\omega) = W_{1}(\phi, \psi) + iW_{2}(\phi, \psi) = \ln \frac{1 + m \sin \left(\frac{2K\omega}{\kappa H} + K\right)}{1 - m \sin \left(\frac{2K\omega}{\kappa H} + K\right)}$$

along segment XX', $W(\phi, \psi) = constant$. Thus according to the preceding assumption, the real part of the complex function $W(\omega)$ is constant along each vertical line through the ends of the cut-offs.

As the function $z = (T/\pi) W(\omega)$ gives the solution to the flow problem in the basic flow region, the following important properties of this function ensue:

1. Along the upper surfaces of the pervious stratum AC and BD [Fig. 1(a)] the potential $\phi = -\kappa H$ and $\phi = 0$, respectively; consequently $W_{2}(\phi, \psi) = 0$.

2. Along the underground contour of the hydraulic structure the streamfunction $\psi = 0$; consequently $W_{1} = 0$.

3. Along the impervious surface CD the streamfunction $\psi = -Q$; consequently $W_{2} = -\pi$.

Because $W(\phi, \psi) = constant$ along each vertical line through the ends of the cut-offs, the orthogonal fragments 1, 2, 3, etc. of the flow region are transformed into the orthogonal fragments 1', 2', 3', etc. on the plane $W = W_{1} + iW_{2}$ (Fig. 3).

It is observed that what was achieved by Pavlovsky's assumption in plane ω is also achieved herein in plane W. The solution procedure is now evident. The Christoffel-Schwarz transformation can be applied to each of the simple fragments of the flow region as well as to the corresponding simple fragments of plane W, to give functions $z(\xi)$ and $W(\xi)$. Functions $z(\xi)$, $W(\xi)$ and function $W(\omega)$ give the solution to the problem (6).

Now the aforementioned procedure will be applied and a series of equations is derived which gives the solution to the problem.

MATHEMATICAL TRANSFORMATIONS

The three types of fragments in Fig. 4 to be studied are the: upstream fragment [Fig. 4(a)]; intermediate fragments [Fig. 4(b)] and downstream fragment [Fig. 4(c)].

Upstream Fragment.—The conformal mapping $z = \xi$ is described by the following Christoffel-Schwarz equation:

$$z = M \int \frac{d\xi}{\sqrt{T - T_{1}}} + N = - M \sin^{-1} \xi + N$$

For point $C_{1}, \xi = -1, z = 0$ and, therefore, $N = i(Mn)/2$. For point $B_{1}, \xi = 1, z = IT$ and, therefore, $M = T/\pi$. Consequently

$$z = -i \frac{T}{\pi} \sin^{-1} \xi + i \frac{T}{2} \right\}$$

from which $c = \cosh \frac{\pi \xi}{T}$

For point $A_{1}, \xi = -a_{1}, z = i(T - S)$ and for point $A_{0}, \xi = -a_{0}, z = -L + iT$. Therefore

$$a_{0} = \cosh \frac{\pi L}{T} \right\}$$

$$a_{1} = \cosh \frac{\pi S}{T} \right\}$$

Now considering conformal mapping $W = \xi$

$$W = M' \int \frac{dz}{\sqrt{(\xi - 1)(\xi + a_{1})}} + N'$$

$$= M' \ln \frac{\sqrt{\xi - 1} + \sqrt{\xi + a_{1}}}{\sqrt{\xi - 1} - \sqrt{\xi + a_{1}}} + N'$$
Flow Problem

\[z = M \int \frac{d\zeta}{\sqrt{1 - \zeta^2}(1 - \lambda^2 \zeta^2)} + N = M F(\zeta, \lambda) + N \]

For point \(C, \ z = 0, \ \zeta = 1, \ F(\zeta, \lambda) = K. \) For point \(C', \ z = L, \ \zeta = -1, \ F(\zeta, \lambda) = -K. \) For point \(B, \ z = iT, \ \zeta = 1/\lambda, \ F(\zeta, \lambda) = K - iK'. \) Thus, the following equations are obtained:

\[z = - \frac{L}{2K} F(\zeta, \lambda) + \frac{L}{2} \]

\[\frac{K}{K'} = \frac{L}{2T} \]

With the use of tables, Eq. 13 gives parameter \(\lambda \) and the complete elliptic integrals \(K \) and \(K' \). Solving Eq. 42 for \(\xi \):

\[\xi = \arcsin \left(\frac{K' \zeta - K}{\frac{L}{2}} \right) \]

For point \(A; \ z = T - S', \ \xi = a. \) For point \(A'; \ z = L + i(T - S'), \ \xi = a'. \) Eq. 14 gives:

\[a = \frac{1}{\lambda} \text{dn} \left(K', \frac{S}{T}, \lambda \right) \]

\[a' = \frac{1}{\lambda} \text{dn} \left(K, \frac{S'}{T}, \lambda \right) \]

Considering conformal mapping \(W - \xi \):

\[W = M' \int \frac{d\xi}{\sqrt{1 - \alpha(\xi + a')(\xi - 1)(\xi + 1)}} + N' \]

is obtained. Now function \(u \) is introduced by means of substitution:

\[\text{sn} \ (u, n) = \sqrt{(1 + a')(\xi - a)/(\xi + a')}, \quad \text{cn} \ (u, n) = \sqrt{2(a + a')/((1 + a')(1 + a))} \]

Finally \(W = \frac{2M'}{(1 + a')(1 + a)} \int du + N' = \frac{2M'}{(1 + a')(1 + a)} u + N' \) is obtained. For point \(A, \ \xi = a, \ \text{sn} \ u = 0, \ u = 0 W = C. \) For point \(A', \ \xi = -a', \ \text{sn} \ u = 1/n, \ u = K(n), W = C'. \) Therefore:

\[W = C + \frac{C' - C}{K(n)} u \]

For point \(C', \ \xi = -1, \ \text{sn} \ u = 1/n, \ u = K(n) - iK'(n), W = C' - i\pi \) and, therefore:

\[C' - C = \frac{K(n)}{K'(n)} \]

Downstream Fragment.—The following equations are obtained, corresponding to the upstream strip:

\[\xi = -\cosh \frac{\pi x}{T} \]
Therefore, parameters C_0, C_1, \ldots, C_{n+1} are known and the functions $W(z)$ (Eqs. 9, 19 and 23) are also defined. Consequently, the function (Eq. 26) with functions $W(z)$ and $s(z)$ (Eqs. 6, 14 and 21) gives the solution of the problem, i.e., the complex potential $\omega = \phi + i\psi$ at every point of the flow region.

The preceding computations are carried out with the use of tables (2, 3, 5, 7) of elliptic integrals K, K', $F(t, m)$ and of elliptic functions $s(n, m)$, $\text{dn}(n, m)$.

The computation is difficult at interior points of the flow region because of the complex numbers operation. In this case quantities ϕ, ψ at the boundary points of the flow region may be computed, then a graphical flow net can easily be drawn, to give ϕ, ψ at any interior point.

APPLICATION OF PROPOSED METHOD IN DESIGN PROBLEMS

The complete solution of the flow problem is not necessary for design purposes. The designer needs to know seepage discharge Q, pressures p on the underground contour of the hydraulic structures, and exit gradient I_E, i.e., the hydraulic gradient at the toe of the structures. Quantities Q, I_E, and p are computed by means of the proposed method as follows. It is assumed that parameters a, a', n, $K(n)$, $K'(n)$, a, a', n, $K(m)$, $K'(m)$, a, a', n, $K(m)$, $K'(m)$, a, a', n, $K(m)$, $K'(m)$ have been computed in the described manner. The discharge through the given flow region is equal to the discharge through the basic flow region. Therefore

$$Q = \frac{K'(m)}{2K(m)} \kappa H \hspace{1cm} (27)$$

To compute the exit gradient, observe that

$$I_E = \frac{1}{\kappa} \frac{d\phi}{dy} = \frac{1}{\kappa} \frac{d\omega}{dy} = \frac{i}{\kappa} \frac{d\omega}{dW} \frac{dW}{dz} \hspace{1cm} (28)$$

Derivatives $d\omega/(dW)$, $dW/(dz)$ and $d\omega/(dz)$ are obtained from Eqs. 21, 23 and 26. Then

$$I_E = \frac{\pi H}{4mK'\sqrt{(1 - \frac{1}{\kappa^2})}} \frac{\sinh \frac{\pi z}{\kappa H}}{\sinh \frac{2Kn}{\kappa H}} \hspace{1cm} (29)$$

For point B [Fig. 1(a)]; $z = iT$, $\phi = 0$, and $\zeta = 1$, therefore, quotient $R = \sinh (nZ/T)/[\sinh (2Kn/\kappa H)]$ has the indeterminate form $R = 0/0$. Then for $\zeta \rightarrow 1$

$$\lim R = \left(\frac{\sinh \frac{\pi z}{T}}{\sinh \frac{2Kn}{\kappa H}} \right) \left(\frac{\cosh \frac{\pi z}{T}}{\cosh \frac{2Kn}{\kappa H}} \right) \hspace{1cm} (30)$$

Note that $\cosh (i\pi) = \cos \pi = -1$, $\text{dn} \circ = 1$, $\text{cn} \circ = 1$ and
Along B'A' \(\xi = -\frac{1}{\lambda} \) \(\text{dn} (\rho K', \lambda') \) in which \(\lambda' = \sqrt{1 - \lambda^2} \)

Once the auxiliary variable \(\xi \) is computed at each interesting point of the contour ABB'A', variables \(\mu \) and \(W \) are computed by means of Eqs. 17 and 19. Eq. 17 gives for \(\mu \)

\[
\mu = F \left(\sqrt{\frac{(1 + a')(\xi - a)}{(a' + a)(\xi - 1)}} \right) \frac{n}{m} \tag{34}
\]

Then Eq. 19 gives

\[
W = C + \frac{C'}{K(m)} \mu \tag{35}
\]

Finally, potential \(\phi \) is computed at each interesting point from Eq. 26, i.e.

\[
\phi = -\frac{kH}{2} \left[1 - \frac{1}{K} F \left(\frac{1}{m} \tanh \frac{W}{2}, m \right) \right] \tag{36}
\]

NUMERICAL VERIFICATION OF PROPOSED METHOD

The accuracy of the proposed method, as well as Pavlovsky's, was checked in the subsequent special flow regions.

In flow region I, four cases were considered as follows:

<table>
<thead>
<tr>
<th>Case</th>
<th>(L/T)</th>
<th>(S/T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>1.00</td>
<td>0.05</td>
</tr>
<tr>
<td>Case 2</td>
<td>1.00</td>
<td>0.15</td>
</tr>
<tr>
<td>Case 3</td>
<td>1.00</td>
<td>0.60</td>
</tr>
<tr>
<td>Case 4</td>
<td>0.50</td>
<td>0.15</td>
</tr>
</tbody>
</table>

In flow region II, two cases were considered:

<table>
<thead>
<tr>
<th>Case</th>
<th>(L)</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>(S_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>0.9838T</td>
<td>0.9998T</td>
<td>0.9871T</td>
<td>0.5999T</td>
<td>0.6001T</td>
<td>0.1691T</td>
<td>0.15627</td>
</tr>
<tr>
<td>Case 2</td>
<td>0.9857T</td>
<td>1.01467T</td>
<td>0.35707T</td>
<td>0.34247</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In flow region III five cases were considered:

<table>
<thead>
<tr>
<th>Case</th>
<th>(L/T)</th>
<th>(S/T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>0.4230</td>
<td>0.0273</td>
</tr>
<tr>
<td>Case 2</td>
<td>0.9175</td>
<td>0.1534</td>
</tr>
<tr>
<td>Case 3</td>
<td>1.1865</td>
<td>0.3420</td>
</tr>
<tr>
<td>Case 4</td>
<td>1.1290</td>
<td>0.4364</td>
</tr>
<tr>
<td>Case 5</td>
<td>1.1490</td>
<td>0.5505</td>
</tr>
</tbody>
</table>

The proposed method, as well as Pavlovsky's, was applied in the aforementioned cases and potential \(\phi \) at characteristic points, exit gradient \(l_E \), and discharge \(Q \) were computed. These magnitudes were then compared with the exact ones.
TABLE 1.—DAMS WITH CUT-OFFS (I, II)

<table>
<thead>
<tr>
<th>Items</th>
<th>Exact values</th>
<th>Proposed Method</th>
<th>Pavlovsky’s Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Values (3)</td>
<td>Error, as a percentage (4)</td>
<td>Values (5)</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>Q/H</td>
<td>0.519</td>
<td>0.518</td>
<td>0.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.193</td>
<td>0.192</td>
<td>0.5</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.134</td>
<td>0.134</td>
<td>0.0</td>
</tr>
<tr>
<td>I_T/H</td>
<td>1.873</td>
<td>1.868</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a) Case I-1</td>
</tr>
<tr>
<td>Q/H</td>
<td>0.488</td>
<td>0.486</td>
<td>0.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.331</td>
<td>0.332</td>
<td>1.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.225</td>
<td>0.225</td>
<td>0.0</td>
</tr>
<tr>
<td>I_T/H</td>
<td>1.016</td>
<td>1.016</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b) Case I-2</td>
</tr>
<tr>
<td>Q/H</td>
<td>0.339</td>
<td>0.338</td>
<td>0.5</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.642</td>
<td>0.641</td>
<td>0.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.386</td>
<td>0.386</td>
<td>0.0</td>
</tr>
<tr>
<td>I_T/H</td>
<td>0.377</td>
<td>0.377</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c) Case I-3</td>
</tr>
<tr>
<td>Q/H</td>
<td>0.649</td>
<td>0.649</td>
<td>0.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.465</td>
<td>0.465</td>
<td>0.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.310</td>
<td>0.310</td>
<td>0.0</td>
</tr>
<tr>
<td>I_T/H</td>
<td>1.385</td>
<td>1.382</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(d) Case I-4</td>
</tr>
<tr>
<td>Q/H</td>
<td>0.322</td>
<td>0.323</td>
<td>0.5</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.633</td>
<td>0.631</td>
<td>0.5</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.394</td>
<td>0.395</td>
<td>0.5</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.218</td>
<td>0.220</td>
<td>1.0</td>
</tr>
<tr>
<td>I_T/H</td>
<td>0.651</td>
<td>0.652</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(e) Case II-1</td>
</tr>
<tr>
<td>Q/H</td>
<td>0.355</td>
<td>0.359</td>
<td>1.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.732</td>
<td>0.729</td>
<td>0.5</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.582</td>
<td>0.590</td>
<td>0.5</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.408</td>
<td>0.410</td>
<td>0.5</td>
</tr>
<tr>
<td>I_T/H</td>
<td>0.268</td>
<td>0.271</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(f) Case II-2</td>
</tr>
</tbody>
</table>

TABLE 2.—EMBEDDED DAMS WITHOUT CUT-OFFS (III)

<table>
<thead>
<tr>
<th>Items</th>
<th>Exact values</th>
<th>Proposed Method</th>
<th>Pavlovsky’s Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Values (3)</td>
<td>Error, as a percentage (4)</td>
<td>Values (5)</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>Q/H</td>
<td>0.726</td>
<td>0.749</td>
<td>0.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>1.340</td>
<td>1.352</td>
<td>1.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.125</td>
<td>0.150</td>
<td>20</td>
</tr>
<tr>
<td>I_T/H</td>
<td>3.070</td>
<td>3.450</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a) Case III-1</td>
</tr>
<tr>
<td>Q/H</td>
<td>0.425</td>
<td>0.438</td>
<td>0.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.852</td>
<td>0.683</td>
<td>0.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.160</td>
<td>0.204</td>
<td>27</td>
</tr>
<tr>
<td>I_T/H</td>
<td>0.805</td>
<td>0.903</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b) Case III-2</td>
</tr>
<tr>
<td>Q/H</td>
<td>0.286</td>
<td>0.294</td>
<td>0.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.450</td>
<td>0.454</td>
<td>1.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.177</td>
<td>0.218</td>
<td>23</td>
</tr>
<tr>
<td>I_T/H</td>
<td>0.381</td>
<td>0.410</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(c) Case III-3</td>
</tr>
<tr>
<td>Q/H</td>
<td>0.254</td>
<td>0.257</td>
<td>1.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.460</td>
<td>0.460</td>
<td>0.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.189</td>
<td>0.232</td>
<td>23</td>
</tr>
<tr>
<td>I_T/H</td>
<td>0.308</td>
<td>0.323</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(d) Case III-4</td>
</tr>
<tr>
<td>Q/H</td>
<td>0.209</td>
<td>0.214</td>
<td>2.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.478</td>
<td>0.478</td>
<td>0.0</td>
</tr>
<tr>
<td>- φ/H</td>
<td>0.194</td>
<td>0.226</td>
<td>16</td>
</tr>
<tr>
<td>I_T/H</td>
<td>0.234</td>
<td>0.244</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(e) Case III-5</td>
</tr>
</tbody>
</table>

The exact magnitudes can easily be computed in the simple flow region I (4,8), but this is not the case in regions II and III. Thus the following indirect method was applied.

If discharge Q and the values of potential φ at the vertices of a flow region are known, the length of the sides of this region can easily be computed. In-

\[
\omega = \frac{\kappa H}{2K} F(t, m) - \frac{\kappa H}{2} \\
\xi = \text{sn} \left[\frac{2K\omega}{\kappa H} + K \right], m
\]
in which \(\frac{K'(m)}{K(m)} = \frac{2q}{\kappa H} \) (39)

For given \(Q \), the complete elliptic integrals \(K, K' \) and the modulus \(m \) from Eq. 39 may be obtained. Consequently, knowing the magnitude \(\omega = \phi \) at each vertex of the flow region, Eq. 38 can be applied to give the values of auxiliary variable \(\zeta \), i.e., parameters \(a_i, c_i \) of the Christoffel-Schwarz integral 2. Thus, this integral becomes a definite integral which can be computed with the desirable approximation to give the dimensions of the flow region. In cases II and III this integral is expressed by means of elliptic integrals of the first, second and third kind (8). Thus, computations are facilitated.

If parameters \(m, a_i, c_i \) are known, the exit gradient \(I_E \) can easily be computed. The Christoffel-Schwarz equation 2 can also be written as

\[
dz = M \frac{dz}{(\zeta^2 - \gamma^2)^{1/2}} \sigma(\zeta) \left(\frac{\gamma - \delta}{\gamma - \delta} \right) \]

in which \(\gamma = \frac{1}{m}, \sigma(\zeta) = \left(\frac{\pi t_{a_d}}{2\sqrt{\zeta - c_i}} \right) \) (40)

If \(\delta \) is a very small positive quantity, it can be assumed that function \(\sigma(\zeta)/\sqrt{\zeta^2 - 1} \) is constant = \(\sigma(\gamma)/\sqrt{\gamma^2 - 1} \) when \(\gamma - \delta \leq \zeta \leq \gamma + \delta \). Consequently

\[
\Delta z = \frac{M \sigma(\gamma)}{\sqrt{\gamma^2 - 1}} \int_{\gamma - \delta}^{\gamma + \delta} \frac{dz}{(\zeta^2 - \gamma^2)^{1/2}} = \frac{M \sigma(\gamma)}{2\gamma} \ln \frac{\delta + 2\gamma}{\delta - 2\gamma} \]

is obtained. For \(\delta \rightarrow 0 \) lim \([[\delta + 2\gamma]/(\delta - 2\gamma)] = \ln (-1) = i\pi \) and lim \(\Delta z = -iT \) [Fig. 1(a)]. Thus

\[
M = \frac{2T \gamma}{\pi \sigma(\gamma)} \frac{\sqrt{\gamma^2 - 1}}{\sqrt{\gamma^2 - 1}} = \frac{2T \gamma}{\pi \sigma(\gamma)} \frac{\sqrt{\gamma^2 - 1}}{\sqrt{\gamma^2 - 1}} \]

is obtained, and

\[
I_E = \frac{1}{\kappa} \frac{d\omega}{dS} = i \frac{d\omega}{dz} \]

From Eq. 37 \(d\omega = \frac{\kappa H}{2K} \frac{dz}{\sqrt{(\zeta^2 - \gamma^2)(\zeta^2 - 1)}} \)

From Eqs. 40 and 42

\[
\frac{dz}{dz} = \frac{M \sigma(\gamma)}{2T \gamma} \frac{\sqrt{\gamma^2 - 1}}{\sqrt{\gamma^2 - 1}} \]

Consequently

\[
\frac{d\omega}{dz} = \frac{\kappa H}{4KT \gamma} \frac{\sqrt{\gamma^2 - \gamma^2}}{\sigma(\zeta)} \]

At point B [Fig. 1(a)] \(\zeta = 1 \). Therefore

\[
I_E = \frac{\pi H \sigma(\gamma)}{4KT \gamma} \sigma(1) \]

This was the method followed herein. Flow regions II and III were constructed to have definite values \(Q \) and \(\phi \) at their vertices. The exit gradient was computed from Eq. 47. Then, the proposed method, as well as Pavlovsky's was applied and the derived \(Q, \phi, I_E \) values were compared with the approximated known exact ones. The results of computations are given in Tables 1 and 2.

It is observed that the results of the proposed method almost coincide with the exact ones, in flow region I and II, i.e., in cases of a flat bottom dam with cut-offs at the one or both ends. In flow region III the observed errors are considerable because of the special characteristics of this region.

In the vicinity of B, C (Fig. 6), slope angles \(\alpha \) of the stream lines are great, while the proposed method assumes that \(\alpha = 0 \). Therefore, the images of a small upper part of BB', CC' on the plane \(\omega \) are significantly different from the images of the corresponding upper part of XX' (Fig. 2). If the embedded structure III has two small cut-offs at B and C, the accuracy of the proposed method is considerably improved. To verify this, the subsequent special flow region was considered. The cut-off depth \(S' \) is only one-tenth of the foundation depth \(S \) (Fig. 7).

Fig. 6.—Schemes Used for Numerical Verification

The following results were derived:

Accurate Results

\[
\phi_c = -0.256 \kappa H, \quad \phi_s = -0.232 \kappa H, \quad I_E = 0.390 \frac{T}{H}, \quad Q = 0.308 \kappa H
\]

Results of Proposed Method. — The results of the proposed method are given as follows:

\[
\phi_c = -0.277 \kappa H, \quad \phi_s = -0.257 \kappa H, \quad I_E = 0.412 \frac{T}{H}, \quad Q = 0.314 \kappa H
\]

It is observed that the error of \(\phi_s \) is considerably smaller than the error of \(\phi_c \) (23%) in the corresponding flow region III-3. The error becomes smaller as the quotient \(S'/S \) becomes greater.

The relative inaccuracy of the proposed method in case III seems to be restricted at the vicinity of the singular points B and C.

In the case under consideration, Eqs. 44 and 45 give
\[J_x = \frac{d\Phi}{dx} = \frac{\pi \kappa H}{4KT} \left[(\gamma^2 - \alpha^2)(\gamma^2 - \zeta^2) \right] \]

in which \(J_x \) = the potential gradient along BC = \(v_x \) and

\[\alpha = \tan^2 \theta = \frac{2K_0 \phi}{\kappa H} + K \]

The gradient \(J_x \) is nearly constant along BC, except at the vicinity of points B and C where it increases quickly and then becomes infinite at these points. Consequently the potential distribution is as shown in Fig. 8. This distribution is, basically, defined by the gradient \(J_o \) at the middle point 0. From Eq. 48 the following equation is obtained for \(\zeta = 0 \).

\[J_o = \frac{\pi \kappa H \gamma}{4KT} \left[\frac{\gamma^2 - \alpha^2}{\gamma^2 - 1} \right] \]

On the other hand, the proposed method gives

\[J_x = \frac{\pi \kappa H}{4K_0 m_0 \sin \left(\frac{2K_0 \phi}{\kappa H} \right)} \left(T - S \right) \]

in which (Eq. 25) \(m_0 = \tan \left(A/4 \right) \). At point O \(\phi = - \kappa H/2 \). Consequently

\[J_o = \frac{\pi \kappa H}{4K_0 m_0 \left(T - S \right)} \]

Given \(0 < |\phi_B|, |\phi_C| < \kappa H \), gradient \(J_x \) does not become infinite at points B, C, according to the proposed method.

Pavlovsky’s assumption involves a linear potential distribution along BC. Thus, the gradient \(J_o \) is according to Pavlovsky’s method:

\[J_o = \frac{\phi_C - \phi_B}{L} = \frac{\kappa H + 2\phi_c}{L} \]

Quantities \(J_o \) were computed by means of Eqs. 50, 52 and 53 and they are given in Table 2.

It is observed that gradients \(J_o \) of the proposed method coincide with the exact ones. Therefore, the potential distribution is given in Fig. 8 by \(\phi^>_c \), i.e., the errors concerning the computation of potential are restricted in the vicinity of points B, C. Pavlovsky’s method also gives accurate values for \(J_o \) except in the cases where the ratio \(S/T \) is small.

The results of the whole checking are given in Tables 1 and 2. These results are summed as follows:

1. In all the examined cases of a flat bottom dam with cut-offs at one or both ends, the results of the proposed method almost coincide with the exact ones.
2. In all the examined cases of an embedded dam without cut-offs, the computed \(\phi \) values at the end C are considerably different from the corresponding exact ones. Considerable errors are also observed for exit gradient \(J_E \), when exit point D is near the singular point C. Except in the vicinity of the end points B and C, the computation of \(\phi \) values at intermediate points of the base BC seems to be accurate. The computation of \(Q \) is also very satisfactory.
3. In the examined case of an embedded dam with two very small cut-offs at the ends B and C, the errors of the computation in the vicinity of these points are considerably smaller than the corresponding errors in case of the analogous embedded dam without cut-offs. It seems therefore that the proposed method is satisfactory in case of a flat bottom or embedded dam with cut-offs at the ends.
4. The results of Pavlovsky’s method are less accurate than the results of the proposed method in all the cases examined. Pavlovsky’s method gave satisfactory results in cases where the ratio \(S/T \) was large, but inaccurate results were obtained in cases where the ratio \(S/T \) was small.
CONCLUSIONS

The present work introduces a new approximate analytical solution of the confined flow problem under hydraulic structures. The proposed method is an improvement of Pavlovsky's method of fragments.

The method is applicable under the following basic assumptions.

1. The pervious stratum can be considered as homogeneous and isotropic and Darcy's law is valid.
2. The flow can be considered as two dimensional.
3. The contour of the flow region is composed of horizontal and vertical straight line segments.

The proposed method can give the complete solution of the flow problem, i.e., the \(\phi, \psi \) values at any point of the flow region.

The method is based on a clear assumption. It was assumed that the images in plane \(\omega = \phi + i \psi \) of the vertical lines dividing the flow region into fragments are similar to the images of proper vertical lines through the flow region of the flat bottom dam without cut-offs. Afterwards a rigorous mathematical treatment was applied to give the solution to the problem.

The fundamental assumption of the proposed method is satisfactory in case the aforementioned vertical dividing lines are extensions of cut-offs and the numerical results almost coincide with the exact ones.

In case the upper point of a dividing vertical line is a vertex of the foundation contour at which the interior angle is \(3\pi/2 \), the fundamental assumption of the proposed method is no longer satisfactory in the vicinity of the vertex. Therefore inaccurate results are obtained in this vicinity. Anyways the method seems to give satisfactory results concerning discharge and \(\phi \) values except in the vicinity of the vertices where, on the other hand, the real flow pattern is not clear.

The proposed method involves more computation work in comparison to the other approximate methods, especially Chugaev's, but the computation procedure is systematic and it does not require mathematic investigations. Consequently the aforementioned disadvantage of the method may be considered of little importance.

APPENDIX I.—REFERENCES

1. Browzin, B. S., Nouvelle méthode d'application de quelques fonctions de la variable complexe

APPENDIX II.—NOTATION

The following symbols are used in this paper:

- \(A, C_i \) = constants;
- \(\cosh u \) = hyperbolic cosine of \(u \);
- \(\operatorname{cn} (u, m) \) = elliptic cosine of \(u \) for modulus \(m \), i.e., \(\operatorname{cn} (u, m) = \sqrt{1 - \sin^2 u} (u, m) \);
- \(\operatorname{dn} (u, m) = \sqrt{1 - m^2 \sin^2 u} (u, m) \);
- \(F(\xi, m) \) = elliptic integral of first kind for modulus \(m \), i.e., \(F(\xi, m) = \int_0^\xi \frac{\sqrt{1 - \xi^2}}{\sqrt{1 - m^2 \xi^2}} \, d\xi \);
- \(H \) = total hydraulic head [see Fig. 1(a)];
- \(I_E \) = exit gradient;
- \(J \) = potential gradient;
- \(K(m) = F(1, m) \) = complete elliptic integral of first kind;
- \(K'(m) = F(1, m') \) = complete elliptic integral of first kind;
- \(L \) = length (horizontal);
- \(\ln u \) = Naperian logarithm of \(u \);
- \(M, M' \) = constants;
- \(m, m' \) = moduli of elliptic integrals and functions;
- \(m, m' \) = moduli of elliptic integrals and functions, i.e., \(m' = \sqrt{1 - m^2} \) and \(n' = \sqrt{1 - n^2} \);
- \(N, N' \) = constants of integration;
- \(\rho \) = pressure;
- \(Q \) = discharge (per unit normal to direction of flow);
- \(S \) = depth of cut-offs, depth of foundation;
- \(\sinh u \) = hyperbolic sine of \(u \);
- \(\sin (u, m) \) = elliptic sine of \(u \), for modulus \(m \), i.e., \(\sin (u, m) = \xi \);
- \(T \) = thickness of pervious stratum;
- \(\tanh \) = hyperbolic tangent of \(u \);
- \(v \) = seepage velocity;
- \(W = W_1 + W_2 \) = auxiliary complex function (see Eq. 4);
$z = x + iy$ = complex coordinate of point in flow region;
$\gamma = 1/m$ = unit weight;
Δ = difference [see Fig. 1(b)];
$\xi = \xi + i\eta$ = point of upper half plane;
κ = coefficient of permeability;
λ = modulus of elliptic integrals and functions;
$\lambda' = \sqrt{1 - \lambda^2}$ = comodulus;
Π = product (see Eq. 2);
$\phi(\xi)$ = function of ξ as defined in text (see Eq. 40);
ϕ = potential function (velocity potential);
ψ = stream function; and
ω = complex potential.

DISCUSSION

Note.—This paper is part of the copyrighted Journal of the Soil Mechanics and Foundations Division, Proceedings of the American Society of Civil Engineers, Vol. 97, No. SM11, November, 1971.
Engineering Properties of Mine Tailings*

Closure by Howard C. Pettibone, M. ASCE and C. Dan Kealy

The writers thank Jackson for his comments on several possible pollution hazards. His discussion fills an acknowledged void in the paper and is a welcome supplement. The discussor's point of caution is well made and we agree that good engineering judgment should be equally applied to the structural and pollution aspects of any proposed tailings usage.

Approximate Solution to Flow Problems Under Dams

Discussion by Boris S. Browzin, F. ASCE and Larry A. White, M. ASCE

The analysis of ground-water flow under hydraulic structures, e.g., dams primarily, has considerable practical importance during the design of these structures when situated on pervious soils. At present the tedious procedure of plotting the so-called flow net is used. It is true that the flow net as a graphical procedure is a solution to the problem, but the underground configuration of a dam, which necessarily must have more than one cut-off, makes this procedure graphically difficult. It is said that experience is essential when plotting the flow net, but even in specialized design offices the flow net is not considered a routine job, consequently there are no experienced flow net plotters available for relatively quick and accurate flow net construction. Moreover, several alternative proposals usually exist before a final one is selected and for each proposal a flow net is needed. Consequently, the amount of work required for the study of uplift based on the flow net requires considerable time.

For this reason, efforts of researchers to recommend an exact or sufficiently accurate and rapid method utilizing analytical methods is important. Christoulas

is to be commended for his work and use of the extensive Russian literature on ground-water flow, to present a working method for determining uplift. Browzin presented another method in a publication in French (10), for the same purpose.

Practicing engineers should not be afraid of using analytical methods if the methods are presented in a convenient manner. The improvement of Pavlovskii’s method presented by Christoulas belongs to this type of publication, i.e., it offers a practical tool for the engineer. However, a numerical example of the method is considered necessary; one was not provided in the paper.

The well-known Schwarz-Christoffel transformation, that maps the half space including the x-axis into a polygon, is called by Christoulas, following the Soviet innovation, the Christoffel-Schwarz transformation, as opposed to the tradition in western literature. This innovation is based on the fact that Christoffel (1829-1900) published his work in 1867, 2 yr earlier than Schwarz (1843-1921), i.e., in 1869. However, Schwarz treated it as a mathematical problem, whereas Christoffel as a problem of application, to solve a heat problem, each discovering the method independently.

The transformation is provided by the integral

\[z = A \int_0^c (\xi - a_1)^{-1} (\xi - a_2)^{-1} \ldots (\xi - a_n)^{-1} d\xi + B \]

in which \(\xi, (\xi = \xi - i\eta) \), designate the positive half plane and \(xy (z = x + iy) \) the plane in which the polygon is located. The terms \(a_n, \) \(n \) represents the magnitude of the polygon angles; \(a_n, \) the abscissa of the apexes in the \(\xi \)-plane; and \(A \) and \(B \) are complex constants. Eq. 54 is called the Schwarz-Christoffel transformation or integral. From Eq. 54 the two equations in Christoulas' paper may be derived among many others, each particular equation is usually called a mapping function. It would certainly be of interest to the reader if the author could present the derivation of the two mapping functions (Eqs. 1 and 2) from Eq. 54 or indicate a literature source of the derivation, because Eqs. 1 and 2 represent the basis of the method. It would be interesting to compare the approach of earlier authors to that of Christoulas.

The concept of Pavlovskii’s approximate method consists of subdividing the field of flow (under dams) into fragments. From the lower end points of the cutoffs, Pavlovskii traces verticals downwards, dividing the field of flow, as was mentioned by Christoulas. The method results in relatively large errors, but Pavlovskii indicated a way to obtain further improvement. This was done by Chertousov (equivalent to Tseritousov in Christoulas paper, Ref. 9) and independently by Chugaev (11,12). Chertousov divides the field of flow by an approximate tracing of equipotential lines from the intersection of the cutoffs with the line of contact of the dam bottom with the soil. The equipotential lines begin as a tangent to the bisectrices and end as a tangent to the verticals to the impervious boundary below the soil stratum. The accuracy of tracing these equipotentials have little influence on the result. Chugaev proposed a method based on approximate determination of the coefficients of hydraulic resistance for each portion (fragment) of the field of flow by adaptation of theoretical solutions of flow for conditions identical or similar to flow conditions in each fragment. The method was included in 1957 in Code Requirements of the Ministry of Electric Power Stations of his country for the design of...
dams and made the subject of a book (12). Chertousov's method is not mentioned by the author and reference to the original Chugaev publication (11,12) is not provided.

These two improvements of Pavlovskii's method, firstly, Ref. 9 and secondly, Refs. 11 and 12, provide a complete solution of the problem for engineering purposes, i.e., the determination of the uplift, the flow gradients, and velocity, including the danger of piping at the toe and the ground-water discharge. However, the merit of Christoulas' work consists in providing further research in the analytical development of Pavlovskii's method and presenting calculations proving the accuracy of this method. Nevertheless, the writers do not think that an improvement of Pavlovskii's method is the correct way to offer to the engineering profession a substitute for the old-fashioned flow net procedure. The assumption on which the author's method is based is this. The fragment I downstream border is represented by the line \(A_1, B_1 \) [Fig. 1(a)]. Its image in complex potential plane \(\omega \) is curve \(a_1, b_1 \). Because of the conformal representation, \(\alpha \) [Fig. 1(a)] and \(\alpha' \) [Fig. 1(b)] are of the same magnitude at point \(M \) and in image \(M' \). However, it is incorrect (perhaps it is a typographic error) to say that "this angle (i.e., \(\alpha \)) vanishes at point \(A \) and at point \(B \). Angle \(\alpha \) is \(\pi/2 \) at \(A \) and at \(B \) because the streamline is vertical at these points. But angle \(\alpha \) vanishes at points \(A_1 \) and \(B_1 \) because at these points the streamline is horizontal. The author further considers a simple region called a basic flow region in which a vertical line \(XX' \) exists, the image of which in plane \(\omega \) [Fig. 1(b)] is also the line \(a_1, b_1 \), i.e., the line \(a_1, b_1 \) is the image which is common to both, the line \(A, B \) [Fig. 1(a)] and the line \(XX' \) (Fig. 2). Then the mathematical descriptions of the line \(XX' \) are found by the author and consequently the line \(a_1, b_1 \). This procedure is certainly very artificial, but since it provides the solution, the method may be developed into a working tool.

The writers, however, believe that the right way to develop the theory, and to find an analytical method for the calculation of the uplift on dams and for other ground flow characteristics, consists of using the method of successive conformal transformations of the flow region of arbitrary configurations until the region becomes a simple case of a flat dam without cutoffs. To illustrate this method consider flow region \(z \) [Fig. 9(b)] and its image in the positive half plane \(\xi \) [Fig. 9(a)]. The Schwarz-Christoffel integral, Eq. 54, provides mapping function \(z \) to transform plane \(\xi \) into \(z \). The reverse transformation from \(z \) to \(\xi \) may be obtained only for few problems but not in general. The angles of polygons 2, 3, 4, and 6 at infinity representing the space below the dam are \(\pi/2, 2\pi, \pi/2, \) and 0, respectively, therefore, \(\alpha_2 = 1/2, \alpha_3 = 2, \alpha_4 = 1/2, \) and \(\alpha_6 = 0 \). Taking into account that in the integral of Eq. 54 it is possible to introduce arbitrarily three constants for the values of \(a_1, a_2, \ldots a_6 \), the following values will be assigned: \(a_1 = -a; a_2 = 0; \) and \(a_6 = S \); in which \(S \) is the length of the cutoff. Introducing these values into Eq. 54

\[
Z = A \int_{\xi}^{\xi} \frac{\xi d\xi}{\sqrt{\xi^2 - S^2}} + B
\]

and

\[
Z = A \sqrt{\xi^2 + S^2} + B \]

Eq. 57 and consequently

\[
\xi = \sqrt{Z^2 + S^2} \]

This is the mapping function transforming plane \(Z \) into plane \(\xi \) and developing the cutoff into straight line 2-3-4 in plane \(\xi \). The dam underground contour transformed into the straight line makes possible the application of the solution for a dam without cutoff to the dam with one cutoff. The remarkably simple mapping function, Eq. 58, makes even possible to use the graphical procedure (11) for obtaining the uplift values at any point from 1 to 5 [Fig. 9(b)]. Unsymmetrical cutoff requires an additional conformal shift.

If the dam has a second cutoff, the mapping of this second cutoff into plane \(\xi \) distorts it into a slightly curved line. The same mapping function, Eq. 58, is then applied a second time, to develop the second cutoff into a horizontal line, i.e., plane \(\xi \) is transformed into plane \(\xi' \), and if necessary a third successive

Fig. 9.—Transformation of Half-Plane \(\xi \) into Polygon Containing Cut-Off \(S \) in Plane \(Z \)

transformation is used to map plane \(\xi' \), into plane \(\xi'' \). This process finally transforms any arbitrary underground contour into a straight line. Because of the simplicity of the mapping function, Eq. 58, the practical application of the method of successive conformal mapping in engineering design may become a routine procedure when the method is further investigated and offered to the profession in a comprehensive presentation.

APPENDIX.—REFERENCES

PREPARING AND SUBMITTING DISCUSSIONS

Discussion of a Proceedings Paper is open to anyone who has significant comments or questions regarding the technical content of the paper. Discussions are accepted for a period of four full months following the date of publication of a paper. They should be sent to the Editor of Technical Publications, ASCE, 345 East 47 Street, New York, New York 10017. The discussion period may be extended by a written request from a discussor.

The original and two copies of the Discussion should be submitted on 8-1/2-in. by 11-in. white bond paper (not tissue), typed double-spaced with wide margins. The length of a Discussion is restricted to two Journal pages (about four typewritten double-spaced pages of manuscript including illustrations); the editors will delete matter extraneous to the subject under discussion. If a Discussion is over 2 pages long it will be returned for shortening. All Discussions will be reviewed by the editors and/or the Division’s Publications Committee. In some cases, Discussions will be returned to discussors for rewriting, or they may be encouraged to submit a paper or Technical Note rather than a Discussion.

Standards for Discussions are the same as for Proceedings Papers. A Discussion is subject to rejection if it contains matters readily found elsewhere, advocates special interests, is carelessly prepared, controverts established fact, is purely speculative, introduces personalities, or is foreign to the purposes of the Society. All Discussions should be written in the third person, and the discussor should use the term “the writer” when referring to himself. The author of the original paper is referred to as “the author.”

Discussions have a specific format. The title of the original paper appears at the top of the first page with a superscript which corresponds to a footnote indicating the month, year, author(s), and number of the original Paper. The discussor’s full name should be indicated below the title, and again to introduce the first paragraph (see Discussions herein as an example), together with his ASCE membership grade (if applicable).

The discussor’s title, company affiliation, and business address should appear on the first page of the manuscript, along with the number of the original paper, the date and name of the Journal in which it appeared, and the author’s name.

Note that the discussor’s identification footnote should follow consecutively from the original paper. If the paper under discussion contained footnote numbers 1 and 2, the first Discussion would begin with footnote 3, and subsequent Discussions would continue in sequence.

Figures supplied by the discussor should be designated by letters, starting with A. This also applies separately to tables and references. In referring to a figure, table, or reference that appeared in the original paper use the number used by the author.

It is suggested that potential discussors request a copy of the ASCE Author’s Guide for more detailed information on preparation and submission of manuscripts.

DISCUSSION

APPROXIMATE SOLUTION TO FLOW PROBLEM UNDER DAMS

Closure by Demetrius G. Christoulas, M. ASCE

Browzin and White’s interest in the writer’s paper is appreciated very much. Browzin and White consider the writer’s method as a working one, but they also consider it as very artificial. They believe that the right way to find an analytical solution to flow problems using hydraulic structures consists of using the method of successive transformations presented by Browzin (1,10) and mentioned by the writer in his paper (1).

The writer believes that an approximate method must be valued on the basis of the following characteristics: (1) Clarity of the assumptions on which the approximate method is based so that the application field of the method is discernible; (2) accuracy and applicability of the method in a broad field; (3) completeness of the method; and (4) computational work required in the application of the method.

The writer’s method is based on a clear and reasonable assumption. This assumption is very satisfactory in a broad application field (deep and short cut-offs). The method is also complete since it can give the values of the point of the flow region. As the writer stated in his paper (Conclusions) his method involves more computational work in comparison to the other approximate methods, especially Chugaev’s, but the computation procedure is systematic and it does not require mathematical investigations. Consequently, the aforementioned advantages of the method may be considered of little importance.

Browzin and White, in their discussion, gave an idea of the method of successive transformations presented in detail by Browzin in 1964 (1,10). This method is especially suitable in case of a pervious stratum of infinite depth. For a stratum of finite depth T the transformation $\xi = \sqrt{z^2 + s^2}$ gives a curved impervious boundary $C_a D_a$ [Fig. 1(a)] in plane ξ, approximated by a mean straight line. In case the S/T values are small the curvature of the image of $C_a D_a$ is light, so the latter approximation does not introduce considerable error. In case the S/T values are great, the approximation by a mean straight line may introduce considerable error, so Browzin considered (1,10) the method as applicable only in case $S/T \leq 0.50$.

It may be also noted that in case of finite depth T the method of successive transformations requires, as the writer’s method does, the use of elliptic integrals of 1st kind.

It is true, that the model of homogeneous pervious stratum is very often far from reality. On the other hand, the problem in case of heterogeneity can be solved through numerical methods. However, the writer believes that the search for more accurate analytical methods on the basis of homogeneity is justified. The analytical methods are inexpensive, easily applicable, and they

give a clear insight to the problem. Consequently, they are preferable in case the model of homogeneous pervious stratum is considered as satisfactory or the lack of sufficient field measurements makes it necessarily acceptable. The writer believes that, in these cases, the application of the more accurate analytical methods is justified since the addition of computational errors to the modeling errors is so avoided without excessive work in comparison to less accurate methods. It must also be noted that some problems of determining the flow characteristics for structures founded in an heterogeneous pervious stratum can be reduced to one for a homogeneous pervious stratum. Polubarinova-Kochina has suggested such a method in case the pervious stratum is composed of two layers of different permeability (4, 8).

A question raised in the discussion concerns the derivation of mapping functions 1 and 2. The functions, 1 and 2, immediately result from Christoffel-Schwarz transformation (Eq. 54) on the basis of Figs. 1(a), 1(b), 1(c). For the rectangle ω [Fig. 1(b)] $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 1/2$, $a_1 = -1/m$, $a_2 = 1/m$, $a_3 = -1$, $a_4 = +1/m$. Consequently, μ is obtained. For the polygon, ω, the angles, α, π, take the following values: (1) $\alpha = 0$ at the vertices $C_m(a_1 = -1/m)$, $D_m(a_2 = -1/m)$; (2) $\alpha = 1/2$ at the vertices $A(a_2 = 1)$, $B(a_3 = +1)$; (3) $\alpha = 1/2$ at the vertices C, D; (4) $\alpha = \pi/2$ at the vertices A and B. Thus, function 2 is obtained.

Obviously, the angle, α, does not vanish at points A, B but at points A, B ($\alpha = 1, 2, 3, \ldots$). The error was a typographical error in the manuscript.

Errata—The following corrections should be made to the original paper:

Page 1573, Eq. 2: Should read "$L^2 - 1/m^1$" instead of "$L^2 - 1/m^2$".

Page 1575, line 3: Should read "$A_1 B_1 (A_2 B_2, A_3 B_2, \ldots)$" instead of $AB (A_1 B_1, A_2 B_2, \ldots)$.

Page 1575, lines 10, 11, 12: Should read "A_1 instead of "A" and "B_1" instead of "B".

Page 1577, line 14: Should read "problem" instead of "problem (6)".

Page 1578, line 4: Should read "$\xi = a_0$" instead of "$\xi = a_0$".

Page 1579, line 8: Should read "Eq. 12" instead of "Eq. 12".

Page 1581, Eq. 30: Should read $\frac{\pi}{T} \cosh \frac{\pi z}{T} dx$ instead of $\frac{k}{T} \cosh \frac{\pi z}{T} dx$.

Page 1582, Eq. 33: Should read $\frac{\pi}{T} [(2\mu + 1)k, \lambda] \frac{dx}{T}$ instead of $\frac{\pi}{T} [(2\mu + 1)k, \lambda] \frac{dx}{T}$.

Page 1583, line 23: Should read "$L = 0.9805ST$" instead of "$L = 0.9805ST$".

BEHAVIOR OF CROSSED BEAMS ON ELASTIC FOUNDATIONS

Closure by Ami Glassman, M. ASCE

The writer would like to thank Ramanathan for the interest he has shown, and the comments he has made.

The comment concerning the number of equations and the use of Digital Computers does not sound as the writer mentioned in the paper, as if the reduction of the number of simultaneous equations is for practical use, or even with the aid of desk computers, where the number of unknowns is limited. (The example itself has been solved by a 1130 IBM Computer, and it is mentioned in the paper).

The remark that "In practice, interconnected crossed beams for foundations are used only in the form of girders . . ." does not refer to this paper, as this paper deals only with crossed beams. The discussor may find answers to this problem in Refs. 2, 4, 6, and 8. The writer approves of Eq. 16, as it was developed from Eqs. 9 and 10.

As for the experiments, the dimensions of the rubber pad were 100 cm \times 100 cm. The thickness was checked as 5 cm, 10 cm, and 20 cm. The differences between the results were about 10%.

Errata—The following corrections should be made to the original paper:

SEEPAGE THROUGH DAMS WITH HORIZONTAL TOE DRAIN

Closure by Mohammad S. Moayeri, A. M. ASCE

The writer wishes to thank Mayer for his discussion of the paper. Mayer correctly pointed out that in practice the horizontal permeability of the material, which is supposed to be isotropic, is usually greater than the vertical permeability. For this reason, designers of earth dams should be careful not to follow too closely the results of a mathematical study based on the assumption of homogeneous and isotropic material.

*Dir., Yotam, Advanced Design Consultants, Ltd., Haifa, Israel.
*Assoc. Prof. of Engrg., Pahlavi Univ., Shiraz, Iran.