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P, = average prestress pressure on prestressing plate;
Q = pull out force;

Q; = uitimate pull out force;

q; = individual anchor load;

S = anchor spacing in widths or diameters;

V = volume of annulus;

v = sand density;

A = uplift displacement;

A, = settlement of surface prestressing plate; and

@ = angle of internal friction.
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INTRODUCTION

Most types of slope failure demonstrate a distinctly progressive character
(6). According to Bjerrum (4), progressive failure will be obtained in a slope
(of overconsolidated clay) if successively, at points along a potential failure
surface, the simultaneous satisfaction of three criteria is obtained: (1) There
must be large internal stresses in the clay mass; (2) the material must have
a stress-strain curve exhibiting a substantial peak, i.e., become strain softening;
and (3) there must be enough energy to strain the material beyond this peak.

There is a considerable interest within solid mechanics in the propagation
of cracks and their consequent effects. Analysis for stresses and strains in
cracked bodies is reduced in complexity if the shape and position of the
crack are assumed, as is usual in the search for a critical sliding surface
in assessing the stability of slopes. In such cases, stability is progressively
decreased as zones of critical stress level develop. Observations in the field
(6) indicate preferred points of crack initiation and directions of propagation.
Current slope stability procedures vary, but basically they ignore the effects
of cracking prior to total failure of the soil mass, or treat them in an empirical
manner (7).

The purpose herein is to present a method for evaluating the effects of
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crack propagation in soil bodies with sloping boundaries. The following first
assumptions are applied: the body is a linear elastic material, the problem
is two-dimensional, and the most critical sliding surface within the body
progresses along a circular path which passes through the toe of the slope.

THEORETICAL CONSIDERATIONS

Of the methods available for the analysis of the stability of slopes, the
most significant for practical applications are those based on the assumption
of a surface of rupture separating two essentially rigid bodies (12). The shape
of the surface of rupture is chosen somewhat arbitrarily, and the most critical
position of it is determined by a procedure of trial and error.

The methods of slices (2) belong in the preceding category and enjoy wide
acceptance in current practice. They exist in several versions, depending on
the assumption made with respect to the distribution of forces within the
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T Stresses

Fig. 1.—Slope Stability Analysis for Elastic Circular Embankment with Circular Slit

soil mass. The rupture is assumed to occur simultaneously along a most
critical surface in the material of reduced strength, i.e., the factor of safety
at each point along a given surface at a given time is constant. The effects
of progressive cracking and an average factor of safety which varies with
time are not well understood.

The approach used in this study of progressive failure is shown in Fig.
1. The body to be analyzed for stress and slope stability has a cylindrical
upper boundary, and may contain a cylindrical slit or discontinuity. By
appropriate selection of P(x,, y,), embankment dimensions may be suitably
approximated; the circular cross section is chosen only for mathematical
convenience. With the application of a simplified method of slices, the factor
of safety may be determined for any desired degree of development of the
circular discontinuity.

The method for determining elastic stresses and strains in such bodies
has been explained in detail elsewhere (9,10,11). Briefly stated, the method
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obtains the conformal transformation of the original region onto a semi-infinite
plane in such a way that the original variables x and y are replaced by
£ and m, with § = £(x,y) and q = n(x,)).

The stresses in the original region may be described by means of a single
auxiliary function, called a stress function or Airy function, which satisfies
the biharmonic equation, characteristic of problems in the theory of elasticity.
The Airy function in turn can be expressed in a simple manner with the
help of two functions, designated ® and V¥, of the complex variable, z =
x + iy.

The conformal mapping of the given region provides not only a geometric
transformation of the domain, but also the boundary conditions. Use is made
of the theory of Cauchy integrals and analytic continuation to obtain the
unknown stress functions, which are found from their expressions at the
boundary of the semi-infinite plane. Once the functions, ® and ¥, are found,
stresses o, o, and 7, in the original region are readily obtained. The successive
steps in the mapping of the problem region (with a slit starting at the toe
of the slope) onto a semi-infinite plane is shown in Fig. 2. The similar case
for a circular embankment with a slit beginning at the top of the slope
is shown in Fig. 3.

As shown in Fig. 1, it is also assumed that when the slit advances to
a givenpoint B’, a line of discontinuity EB’ appears above it. The extent
of slit development is given by the ratio w/w_,,. The material above the
circular crack BB'B” is taken as a rigid body BB’EB”, whose stability is
analyzed by a simple method of slices. The region to the right (B'FE) is
assumed to be in a condition of elastic stress. The need for this mixed
approach to the determination of stresses and forces arises from the circular
crack BB'B", which constitutes a surface of discontinuity of the stress vector,
and causes the elastic stresses to be undetermined along that surface. The
solution procedure consists of applying the equations of equilibrium to the
body BB'FEB”, and solving for the strength reduction factor, commonly
interpreted as the factor of safety.

Along B'F (Fig. 1) the resisting forces are divided into two components,
namely a component, S,, which is a function of the normal stress, o, and
a component, S_, which is independent of ¢. The components of the stress
vectors ¢ and 7 are found by considering the equilibrium at any point along
the surface B'F. If positive signs are as shown by the stress vectors in
Fig. 4, the summation of forces in directions normal and tangential to the
inclined plane BC yields

g ol y :
c=0,c0820+0,sin?0+7,8in20 ....... ... ... .. )

ay—ox .
T= Py Sin20 —7,,€0820 ... ........... . 0000 )

Thus, the resisting effect in the elastic portion is given by tan ¢, [§ o ds
+ ¢, [E ds. The driving effect is simply the summation of the driving forces
[E 7 ds along the path B'F.

The remaining part of the analysis is accomplished by a method of slices,
with the Bishop simplification as shown in Fig. 5, i.e., R, and R, are horizontal.
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Taking the sums for all n slices, and recognizing that the forces on the
S|d:cs of the slices cancel, the resisting force is: =, (C, + N tan ), in
which r means required. The driving force is: %, (W sin o) in which W

= weight of the slice; N = normal force on the bottom of the slice; C
= required shearing resistance not expressed as function of N; C,=c b'
sec a; N tan ¢, = required shearing resistance expressed as a functic;n
of N; and N tan ¢, = ob sec a tan ¢, Note that the Mohr-Coulomb
form of the shearing resistance equation has been employed, and that the
equations are written without specific attention to the effects of water. The
available shearing resistance factors are related to the required ones by the

factor of safety, F, as (Normally based upon the peak shearing resistance

9y
A __dx T"ye c
o, l g ds T,
Txy o
8

Fig. 4.—Stresses on Inclined Plane Fig. 5.—Forces Acting on Slice

(Bishop Assumption)

and the subscript, a, sa implies. Alternately, parameters based upon residual
values, subscript res, are used.)

SRR C tan ¢

§,=—=—+N L=
L e ot Nt L e o e )}

Finally, the resisting and driving forces for the two parts considered in

It)he sliding mass are added together and the factor of safety is determined
y

i Resisting forces along BB'F
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which equals available shearing resistance force in the elastic part dependent
upon the normal component of stress; and

F
S.=c, I ds Voy G iviriean® B ab ¥ RIS m WL LB i, T T @)
Ly
which is available shearing resistance force in the elastic part independent
of the normal component of stress, and

Sp =M€ TN b i it siis oot st e e oot ®)

which equals available shearing resistance force in the slit portion of the
mass; and

is the driving force in the elastic part which induces the shearing components
of stress; and

D ERA= R (W sini"oc) i O et Riast S PN e e e L R (10)

is the total driving force in the slit portion of the sliding mass.

A very similar method of analysis is carried out in the case of the elastic
embankment with a slit originating at the top. It has been reported (3) that
the effect of the number of slices on the factor of safety, for a range of
15 to 70 slices, is negligible in typical cases. In this work, the total sliding
length, BB'F, was assigned 50 slices. The number of slices actually used
in the analysis then depended on the ratio of the slit length, BB', to the
total.

RESULTS

Stress Distribution.—The stress distribution within and under long, linear
elastic, isotropic, homogeneous, and circular embankments continuous with
the underlying material and containing a crack of circular shape was investigated.
Only body forces due to gravity were considered, including those below the
base of the embankment. In similar investigations (1,10), the material below
the base of the embankment was assumed to be weightless. Embankment
proportions, viz, width-height ratios were taken at practical levels. The calculated
stress distributions were tested at random by checking equilibrium of partial
areas of the embankment.

No Slit.—Figs. 6 through 9 show typical distributions of stress for an
embankment of given geometry and physical parameters. The contours represent
stresses in a dimensionless form, viz., stress/yH, in which y = unit weight
and H is the maximum (center) height of the embankment. In Figs. 6 and
8 the value of Poisson’s ratio p is 0.3, while in Figs. 7 and 9, p = 0.475.
Prior reported studies suggest that p. = 0.3 is a reasonable value for unsaturated
soils, while w = 0.475 is a value appropriate to a saturated clay (5).

The values of vertical normal stress are rather insensitive to changes in
Poisson’s ratio. A change in the value of p from 03 to 0.475 causes a
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va.riation in. the values of the vertical normal stresses of less than 5 %;
this conclusion was also reported by Perloff, et al. (10).
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Fig. 7.—Contours of Horizontal Normal Stress Ratio (No Slit; p = 0.475)

Contours of horizontal normal stress ratio o./vH are shown in Figs. 6
and 7. _For these, and contrary to the case of vertical normal stresses, a
change in the value of Poisson’s ratio from 0.3 to 0.475 produces a very
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different pattern of stresses, both in magnitude and distribution. When p
= 0.3, the horizontal normal stresses tend to change more rapidly near the
toe of the slope. Values of these stresses at the center line of the embankment
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Fig. 8.—Contours of Shear Stress Ratio (No Slit; p = 0.3)
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Fig. 9.—Contours of Shear Stress Ratio (No Slit; p = 0.475)

decrease in magnitude with depth for p = 0.3, but increase for p = 0.475.
In the case of w = 0.3, a slight area of tension is seen to develop within
the embankment. The area in which tension is in evidence was found to
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increase in size within and under the embankment as the ratio (y,/x,) of
the coordinates of the center of the circle defining the boundary of the
embankment increases. A value of y,/x, = 0.85 seems to be critical, i.e.,
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Fig. 10.—Contours of Horizontal Normal Stress Ratio (0v/w,,,, = 0.176; p = 0.475)
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Fig. 11.—Contours of Shear Stress Ratio (0/w,,,, = 0.176; p = 0.475)

for values of y,/x, > 0.85, only compressive horizontal normal stresses
are calculated within the embankment. When a value of p = 0.475 is used,
the contours of ¢ /vy H display a flatter orientation.
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Figs. 8 and 9 show contours of shear stress ratio for p = 0.3 and p
= 0.475. As for the horizontal normal stress, the pattern of stress distribution
is changed by the value of w, but to a lesser degree. However, this change
in Poisson’s ratio led to only a small change in the distribution of the maximum
shear stress ratio, 7. /vH.

Slit Originating at Toe.—Figs. 10 and 11 show some typical patterns of
the magnitude and distribution of stresses resulting from the presence within
the embankment of a crack of circular shape originating at the toe of the
slope. The case presented in Figs. 10 and 11 corresponds to a position of
the slit with an abscissa x,,, = 0.6, which gives a value of the ratio (w/wy,,)
= 0.176 (see Fig. 1). These stresses were computed using p = 0.475.

The distribution and magnitudes of the vertical normal stresses are quite
similar, with and ‘without the crack. The greatest differences occur below
and somewhat to the right of the crack, where the increase in vertical stress
with depth is definitely nonlinear. A comparison of the contours of horizontal
stress ratio in Figs. 7 and 10 demonstrate the effect of the slit; there is,
of course, a loss in continuity across the slit proper. Stress concentrations
are in evidence near the toe of the embankment slope, as is the case for
the vertical normal and maximum shear stresses for both cracked and uncracked
slopes, but they are not as pronounced as those found by LaRochelle (8)
in gelatin models. The distortion in the vertical and horizontal shear stress
(,,/yH) pattern, produced by the slit is seen by comparing Figs. 9 and
11. Again, the contours are discontinuous across the slit. The maximum shear
stress ratio t___ /vy H is only locally modified by the presence of the slit.

max

STABILITY ANALYSIS

Some of the results obtained from the slope analyses are plotted in Figs.
12 through 14, which relate the factor of safety, F, and the degree of advancement
of the slit, w/w,,,. Analysis was accomplished for both an advance of the
slit from toe to crest, and from crest to toe along the same path. All the
dimensions were normalized with respect to the maximum height of the
embankment. Typical values were selected for the shear strength parameters.
The symbols c, and ¢, refer to parameters based upon peak strength; while
¢, and ¢, are for residual strength.

In Fig. 12 are shown the results of a stability analysis which located the
critical circle in accordance with the Bishop simplified method of slices. This
particular critical circle passed through the toe of the slope, for the geometry
and shear strength parameters assumed. Figs. 13 and 14 present the results
of stability analyses for noncritical circles. However, in most cases, the circle
center is close to the critical one.

Three different cases were considered for each geometrical representation.
In Case A the peak shear strength parameters were available along both
the failed and nonfailed portions of the assumed critical surface (Fig. 12).
In Case B peak values of shear strength parameters were available along
the nonfailed portion of the assumed critical surface, and residual values
of the shear strength parameters were mobilized on the failed portion of
that surface. The values of c,, and ¢,, were much smaller than c, and
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¢,. This case is shown in Fig. 13. For Case C, peak and residual values

of tl}e shear strength parameters were available along the nonfailed and failed

portions of the assumed critical surface, respectively. The value of ¢, was
S

only slightly less than ¢,, but ¢ — 0. The co i
i1 3 rresponding curves appear
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Curves representing the progression of failure from the toe were distinctly
different from those showing progressive failure, along the same path, ffom
the crest. In the former case, the factor of safety increases substaptlally
shortly after the crack appears at the toe of the slope, reache§ a maximum,
and then decreases gradually to the limiting value for a ratio of o/,
= 1. In the second case there seems to be an increase in the value of
the factor of safety, after the first evidence of cracki{)g, only when peak
shear strength is available along the entire assumed critical surface. When
values ¢ .. and c_ are employed, the factor of safety for the second case

res res

decreases to a minimum for vaiues of w/w,,, = 0.2 to 0.5, and then increases.

(-0.2,-24)
v

26}
24}
v (40,33)
22}
2070 u = 0475
Z '8t Cres /yH = 000
3
E ¢I’" =20
18r Ca/yH = 006
o
© 3
- 23
5 14} %a
S
8
w2t Slit Starting at Toe

0.8
AY o "
06 N Slit Starting ot Top
. MRS S e R e
N “_ -
‘e, e
04r R T s, 2

I 'l I 1 Y I

i ¥ n "
020 Ol 0z 03 04 05 06 07 08 09 10 “/vma

Fig. 14.—Relationship Between Factor of Safety and Progression of Slit, Case C

The effect of the value of Poisson’s ratio on the values of. the facftor
of safety is not readily discernable from the results. However, in a 'typlca,ll
case with no slit, the change was only F = 1.10 to F = 1.14, as Poisson’s
ratio changed from p = 0.3 to n = 0.475.

CONCLUSIONS

The conclusions drawn from this work can be separated into two categories,
viz., those concerning the magnitude and distribution of stresses, and those
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concerning the values of the factor of safety during progressive failure. With
respect to the former:

1. For the geometry of a long, circular, homogeneous and linearly elastic
embankment and foundation, the horizontal normal stresses and the horizontal
and vertical shear stresses vary in distribution and magnitude with the value
of Poisson’s ratio.

2. When the circular embankment contains a circular slit the horizontal
normal and the shear stresses change in distributional pattern as compared
with the case for no slit. For these stresses (as well as for the maxima
shear stresses) the stress contours become discontinuous when they cross
the slit. The assumption that the weight of the material above the slit acts
across it, produces continuous vertical normal stress contours.

The main conclusions reached in the second category are:

1. The values of the factor of safety when the progressive failure advanced
from the toe of the slope toward the upper part of the embankment are
characterized by a sharp increase for values of the ratio, w/w,,,, between
0.2 and 0.3. Thereafter the value of F decreases steadily to the value for
a simultaneous failure as analyzed by the method of slices.

2. When the progressive failure advances from the upper part of the slope
downward the factor of safety increases slightly at the beginning for peak
values of the shear strength parameters available all along the potential failure
surface. It then decreases to a minimum and increases again to the value
for a full assumed critical surface. When only residual values of shear strength
parameters are available along the failed portion of the assumed critical surfaces,
no significant increase of the initial value of F is observed.

3. The relative safety or potential instability of a sloping mass is very

different depending on the direction of progression of the assumed critical
surface.

This study indicates that local failures which start at the upper part of
a slope are potentially more dangerous than local failures initiated at the
toe of the slope. It can be observed from the figures that for the same
failure path, geometric characteristics of the embankment, and parameters
of shear strength, the corresponding values of factor of safety are greater
for failures started at the toe than those occurring for failures starting at
the top of the embankment for the same o /® oy Values.

It is believed that this study introduces a new perspective in the study
of the stability of sloping earth masses, and possibly in other problems involving
a potential for progressive failure, namely, that the direction from which
failure propagates is an important factor to consider in stability.
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APPENDIX Il.—NOTATION

The following symbols are used in this paper:

¢,¢ = shear strength parameters;
] H = maximum height of circular embankment;
| t = complex variable & + in (t-plane);
u = complex variable u, + iu, (u-plane);
w = complex variable w_ + iw  (w-plane);
x,y = Cartesian coordinates;
x. Y. = coordinates of center of circular arc defining contour of circular
slit in z-plane;
x,,Y, = coordinates of center of circular arc defining boundary of circular
embankment in z-plane;
Xps Yeip = coordinates of tip of slit in z-plane;
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= c0fnplex variable x + iy (z-plane);
Y = unit weight;
w = Poisson’s ratio;
€ m = orthogonal curvilinear coordi i
: nates in z-plane;
dinates in t-plane; P e
o,0,= total pormal stress components parallel to x and y axes;
T,, = shearing stress components in Z-plane; ,
d(),¥(t) = <-:omplex potentials; functions of complex variable t = & +
in;
$(2),¥(z) = complex potentials; f i
4 C ; functions of compl i =
sy plex variable z 53 ap

o = angular measure of slit development, .. is full development.




